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Abstract. Learning a proper distance metric is crucial for many com-
puter vision and image classification applications. Neighborhood Com-
ponents Analysis (NCA) is an effective distance metric learning method
which maximizes the kNN leave-out-one score on the training data by
considering visual similarity between images. However, only using visual
similarity to learn image distances could not satisfactorily cope with the
diversity and complexity of a large number of real images with many
concepts. To overcome this problem, integrating concrete semantic re-
lations of images into the distance metric learning procedure can be a
useful solution. This can more accurately model the image similarities
and better reflect the perception of human in the classification system. In
this paper, we propose Semantic NCA (SNCA), a novel approach which
integrates semantic similarity into NCA, where neighborhood relations
between images in the training dataset are measured by both visual
characteristics and their concept relations. We evaluated several seman-
tic similarity measures based on the WordNet tree. Experimental results
show that the proposed approach improves the performance compared
to the traditional distance metric learning methods.

Keywords: Metric Learning, kNN, Image Classification, NCA, Seman-
tic Relations.

1 Introduction

A simple method to classify a data point is by comparing it with its neighbors.
The k-Nearest Neighbor (kNN) rule[1] classifies each point using the majority
class of its k nearest (most similar) neighbors in the training set. Recently, there
has been an increasing interest in non-parametric kNN for image classification[2],
with a competitive classification performance compared to other parametric clas-
sification methods.

Distance metric learning plays an important role in computer vision, ma-
chine learning and multimedia retrieval. In particular, due to the very nature
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Fig. 1. Intra-class diversity and inter-class similarity

of kNN classification, an appropriate distance metric is critical to improve the
kNN classification performance[3]. In image classification, most distance metric
learning approaches try to employ the information contained in visual features
and class labels, so that an appropriate Mahalanobis distance metrics are ob-
tained to achieve better classification performance. The Mahalanobis distance
is usually characterized by a positive semidefinite (PSD) matrix, which depends
on the training data, and its estimation is the objective of distance metric learn-
ing. A variety of distance metric learning methods have been proposed in the
literature[4,5,6,7,8,3,9,10,11,12,13], such as Neighborhood Components Analy-
sis (NCA)[10], Large Margin Nearest Neighbor (LMNN)[6], Maximally Collaps-
ing Metric Learning (MCML)[5] and Information-Theoretic Metric Learning
(ITML)[8] and so on. NCA tries to maximize the probability of each sample
assigned to those of same class using the visual information in each class label.
The nearest neighborhood relation between two images in NCA is characterized
by their visual similarity. A prevalent idea in metric learning is that points in
the same class is made to be near to each other, however those points belonging
to different concepts are pushed away and MCML explicitly constructs a con-
vex optimization building on the basis of the idea. The same idea is applied in
LMNN based on the large margin framework.

However, in conventional distance metric learning methods, semantic relations
between concepts are not taken into account. These solutions may suffer from
the following limitations:

1) First, using only low level visual features could not appropriately model the
intra-class diversity and inter-class similarity. In a large scale scenario, each class
contains a large number of images, which leads to very heterogeneous classes,
with diverse shapes and visual characteristics. Besides, the number of concepts
may be large, and discriminating between the distributions of the different con-
cepts can be very complex, as images belonging to different classes may be
visually similar. So these facts pose a tremendous challenge for measuring image
similarity using only visual features. For instance, in Fig. 1 two images with
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(a)

(b) (c)

Fig. 2. Semantic information and the transformed space in kNN: a) tree with related
concepts, b) distribution in the transformed space considering only visual similarity,
and c) distribution in the transformed space considering visual and semantic similarity.

the same label dolphin have wide visual differences in shape, color and texture
(i.e. intra-class visual diversity). At the same time, another image with the la-
bel shark is visually similar to one of the dolphin images (i.e. inter-class visual
similarity).

2) Second, using only low level visual features could not satisfactorily reflect
humans’ real perception on image similarity. As the final objective of distance
metric learning is to obtain a metric which better reproduces human perception,
ignoring the semantic relations of concepts may not well satisfy this requirement.
However, this kind of information can better reveal more meaningful high level
similarities between images[14]. For instance, as shown in Fig. 2a, the concepts
of chicken and hawk should be closer between them than to the concept car,
as both are related to the concepts animal and bird. Data points are projected
in such a way that they are optimized for classification according to the given
training class labels, as shown in Fig. 2b. However, using semantic relations, the
projection can reflect a more semantically meaningful structure (see Fig. 2c). A
kNN classifier can also benefit from this projection, as related classes are closer
than non-related.

Motivated by the above observations, in this paper we study the integration
of semantic similarity in distance metric learning in the case of NCA and pro-
pose Semantic NCA (SNCA). In order to learn a more suitable matrix A to
improve the performance of kNN, the nearest neighborhood relation between
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two images is characterized by their visual similarity as well as the semantic
relationship between their class labels, using an appropriate semantic measure
based on the WordNet database[15]. Following the NCA formulation, the prob-
ability that a data point selects another point as its neighbor in the transformed
space is measured based on both visual similarity and semantic correlation. As
the performance of the proposed approach highly depends on the way in which
semantic similarity is measured, we also study several semantic metrics based
on the WordNet database.

The rest of this paper is organized as follows. The proposed Semantic NCA
method is described in Section 2. Section 3 introduces the semantic similarity
measures between concepts. Experimental evaluation is detailed in Section 4.
The last section draws the conclusions.

2 Semantic Neighborhood Component Analysis

In this section, we first introduce the distance metric problem and the NCA
framework for kNN multi-class image classification. Then, we integrate semantic
similarity into this framework, resulting in the proposed Semantic NCA (SNCA)
algorithm.

2.1 Distance Metric Learning

Suppose that we have a training dataset C = {x1, x2, · · · , xN} with N images,
where xi represents the feature vector of the element i in the dataset. The
element i belongs to a class with the label yi. Given two elements i and j, the
(squared) Mahalanobis distance between their feature vectors is calculated as:

d2 (xi, xj) = (xi − xj)
T

M (xi − xj) (1)

where M is the PSD matrix (M ≥ 0) we want to learn. As the classification
procedure is based on neighbors, an optimal M should have the following prop-
erty: data points belonging to the same class should have a low distance and
data points belonging to different classes are separated as much as possible (see
Fig. 2b).

Using M = AT A, then Eq. (1) can be also rewritten as:

d2 (xi, xj) = (xi − xj)
T

AT A (xi − xj) (2)

Following this transformation, the distance between two points is calculated as
the Euclidean distance between the projected points Axi and Axj . Thus, the
Mahalanobis distance is transformed to Euclidean distance via the matrix A.

2.2 Including Semantic Similarity in NCA

In NCA[10], the objective is to learn a metric A maximizing the classification
performance for future test images in a kNN multi-class image classifier. How-
ever, the only available resource is the training dataset C. NCA applies the
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leave-one-out (LOO) rule to maximize the performance to obtain A. During the
learning stage, the assignment of neighbors is stochastic, which means that an
element j is selected as a neighbor of another element i with certain probability
p
(NCA)
ij . Thus, it is not certain whether j is considered as a neighbor of i or not.

Such certainty would correspond to pij = 1 and pij = 0, respectively. A higher
value of p

(NCA)
ij shows that the two closer points are more likely to be neighbors.

Therefore the similarity between i and j is calculated as[10] :

I(NCA) (i, j) = v (xi, xj) = exp
(−d2 (xi, xj)

)
= exp(−‖Axi − Axj‖2) (3)

where v (xi, xj) is the visual similarity between two elements via their feature
vectors xi and xj . An important characteristic of NCA is the description of
neighborhood relations using a stochastic assignment rule in the LOO-kNN
framework. When dealing with images, visual features are used to measure neigh-
borhood relation between two points. However, visual features are not the only
information available in a supervised classification system, such as kNN. As
high-level textual descriptions of the content of images, class labels should not
be ignored as they can help to better describe the relation between two images.

Fig. 1 illustrates both visual and semantic description of images. In the ex-
amples, each image is described by two parts, including visual feature xi and
textual label yi. In general, y is the class label which is closely related to classifi-
cation. For a given pair of images i and j, their visual similarity is measured using
the feature vectors as v (xi, xj). In SNCA we also use the semantic similarity
s (i, j) between concepts, in order to obtain a classification system being more
consistent with human cognition. Thus, not including the semantic component
in neighborhood relations can prevent NCA from using important information
which could help to improve the classification performance.

Therefore, we compute the similarity between two images i and j using both
visual and semantic similarity as:

I(SNCA) (i, j) = v (xi, xj) s (i, j) = exp(−‖Axi − Axj‖2)s (i, j) (4)

Comparing Eq. (3) and (4), this new similarity between two images also de-
pends on semantic information. In order to be consistent with the definition of
probability, we normalize the previous expression. Then the probability p

(SNCA)
ij

including both visual and semantic similarity can be rewritten as:

p
(SNCA)
ij =

{
1
Ω I

(SNCA)
ij (xi, xj) = s(i,j) exp(−‖Axi−Axj‖2)

Σk �=is(i,k) exp(−‖Axi−Axk‖2)
, i �= j

0 i = j
(5)

which denotes the probability that a point i selects another point j as its neighbor
given their visual features and corresponding concept relation.

The objective is to try to find a projection which maximizes the probabil-
ity that points with the same label are neighbors in projected space. For that
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purpose, we use the objective function proposed in [10], which maximizes the
LOO score of the of all data points in the training set C:

g(SNCA) (A) =
N∑

i=1

log p
(SNCA)
i =

N∑

i=1

log
∑

j∈Ci

p
(SNCA)
ij (6)

where Ci is a set of all points which have the same class label to point i. In
Eq. (6) the only factor involving semantic correlation is s(i, j), with the matrix
A remaining independent. Thus we can compute the gradient of g(SNCA) (A) as:

∂g(SNCA) (A)
∂A

= 2A

N∑

i=1

(
N∑

k=1

p
(SNCA)
ik xikxik

T −
∑

j∈Ci
p
(SNCA)
ij xijxij

T

∑
j∈Ci

p
(SNCA)
ij

)

(7)
where xij means xi − xj .

The same optimization method used in NCA can still be used to estimate
A, while we also take advantage of semantic similarity. After obtaining A, the
input data can be projected in the transformed space, in which conventional
kNN classification can be performed.

3 Semantic Similarity between Concepts

In this paper, semantic similarity is measured based on WordNet[15]. In the ex-
periment we tested four different measures: node count (path), Resnik (res)[16],
Leacock and Chodorow (lch)[17], and the least common subsumer measure[18]
(LCS ). Except for LCS, the other three measures can be found in the JAVA
WordNet Similarity (JWS) package[19] which implements several widely used
semantic similarity measures between concepts in WordNet. Table 1 details how
these measures are computed.

In WordNet[15], each concept is represented as a node in the tree taxonomy,
with the term synonym set (synset). We denote depth(i) as the length of the path
from root to node i. The most common subsumer CS(i, j) is the most specific
concept which is a common ancestor of the concepts i and j. The information
content IC(i) of a node i is computed as described in [16].

4 Experimental Results

4.1 Dataset and Feature Representation

We evaluate the proposed method over the Caltech256[20] and ImageNet[21]
datasets. We selected a total of 4546 images from the Caltech256 dataset cover-
ing 40 subconcepts of the concept animal (Caltech40). For the second dataset
ImageNet20 we selected 20 concepts covering subconcepts of the broad concepts
animal, vegetable, flower and vehicle, represented by about 21100 images from
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Table 1. Concept semantic similarity measures used in the experiments

Measure Formulation Description

path spath (i, j) = 1
min(depth(i),depth(j))

The reciprocal of the number of nodes
along the shortest path between i and j

res sres (i, j) = IC (CS (i, j))
CS (i, j) is the least common subsumer

of node i and j, IC (i) is the
information content of node i

lch slch (i, j) = −log (L/2D)
L is the length of the shortest path

between i and j and D is the
maximum depth of the taxonomy

LCS sLCS (i, j) = depth(CS(i,j))
max(depth(i),depth(j))

The length of the least common
subsumer node normalized by the

longest branch

Table 2. Comparison of the classification accuracy of NCA, LMNN and SNCA with
different semantic measures in Caltech40

Accuracy(%) Caltech40

Method color GIST
k = 20 k = 40 k = 20 k = 40

kNN 9.78 10.43 13.48 14.72
NCA 11.40 11.27 20.37 19.71

LMNN 10.26 10.92 13.83 13.70
SNCA (path) 12.23 11.75 18.56 18.16
SNCA (res) 11.71 12.01 21.56 20.28
SNCA (lch) 12.01 11.79 20.11 20.24

SNCA (LCS) 11.93 11.79 22.18 20.86

the ImageNet dataset. For each concept approximately half of the images were
used for training and the remaining were considered as test images.

We used color histograms in the HSV space (16x4x4 bins) and GIST[22] to
represent the images in the visual feature space.

4.2 Results and Analysis

In the first experiment, we studied the classification accuracy of SNCA, NCA,
LMNN and basic kNN over both datasets, with different values of k. SNCA
uses path, res, lch, LCS as semantic similarity measures. The dimensionality is
reduced using PCA to 80 dimensions for both color and GIST feature, in order
to accelerate the classification process.

Table 2 shows the classification accuracy in Caltech40. For both features, the
bestperformance is obtainedusingSNCAwithdifferent semanticmetrics, as shown
in Table 2. However, the classification accuracy using color features is still very
limited. Using GIST features, it improves considerably. In both cases SNCA has
better performance than NCA and LMNN for most of the semantic measures. In
general the classification accuracy is reasonably high, considering that the dataset
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Table 3. Comparison of the classification accuracy of NCA, LMNN and SNCA with
different semantic measures in ImageNet20

Accuracy(%) ImageNet20

Method color GIST
k = 20 k = 40 k = 20 k = 40

kNN 31.46 30.13 38.36 37.93
NCA 33.47 33.75 41.05 40.97

LMNN 33.75 33.63 41.72 41.22
SNCA (path) 32.99 34.03 41.26 41.09
SNCA (res) 34.59 34.84 42.16 41.20
SNCA (lch) 34.63 33.83 42.34 41.93

SNCA (LCS) 34.07 34.88 42.69 42.22

Table 4. Comparison of the five most frequently predicted concepts using instances of
the cormorant concept as test images in Caltech40. F: frequency, SS: semantic similarity
using LCS metric.

Method
NCA SNCA (LCS) SNCA (res)

Concept F (%) SS (%) Concept F (%) SS (%) Concept F (%) SS (%)
penguin 16.98 84.62 cormorant 15.09 100 cormorant 18.87 100
gorilla 13.21 53.33 penguin 15.09 84.62 hummingbird 11.32 69.23

hummingbird 11.32 69.23 horse 9.43 57.14 penguin 11.32 84.62
cormorant 9.43 100 hummingbird 9.43 69.23 gorilla 9.43 53.33

horse 7.55 57.14 gorilla 7.55 53.33 horse 9.43 57.14

has forty concepts.Particularly, SNCAimproves the accuracyof conventionalNCA.
The classification accuracy over ImageNet20 is shown in Table 3. The performance
of SNCA is better than NCA with res, lch, LCS measures using the color feature.
In the case of the GIST feature, we can observe that NCA has a worse performance
than LMNN. However, the performance of NCA is significantly improved by inte-
grating semantic information, resulting in a better accuracy than LMNN. Thus,
integrating semantic information in NCA helps to better discriminate between im-
ages, and a better performance can be achieved.

However, the improvement of SNCA is still limited. Even though the number
of concepts considered in the experiment is high compared to other datasets used
in the evaluation of distance metric learning methods[6], this number still falls
short to fully exploit semantic relations in the WordNet hierarchy, especially in
ImageNet20 where the concepts were selected randomly among all the concepts
in ImageNet. Although the effect in small datasets with few concepts is still un-
satisfactory, such kind of semantic relations may be significant in large datasets
with high diversity. Thus, most distance learning methods using only visual sim-
ilarity may have good performance when dealing with specialized datasets with
relatively few and narrow concepts (e.g. faces, letters, plants)[6], but may fail
when they are used in scenarios with larger datasets, as they may not be able
to cope with all the variability in the dataset.



432 F. Wang et al.

�

����

����

����

����

���

����

����

����

����

�

���

���

��	

���

��


���

���

���

���

�

�
�
�
�
�
�
�
�
�
�
	
�


�
�
�


�
�
�
�
�
�
�

�
�
�
�
�
	
�
�
�
�
�
�
�
�
�


�
	
�


������������������ ������������������������

(a) NCA
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(b) SNCA (LCS)
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(c) SNCA (res)

Fig. 3. Most frequently predicted concepts (top 20) using instances of the cormorant
concept as test images in Caltech40: a) NCA, b) SNCA (LCS) and, c) SNCA (res). Fre-
quency and semantic similarity (using LCS metric) between the true and the predicted
concepts are shown combined in each figure (better viewed in color).

Apart from improving the classification accuracy of the classifier, another
objective of this work is to project concepts in a more semantically meaningful
structure, in which semantically related concepts are projected closer. In order to
illustrate how the resulting space using SNCA can be more suitable, Fig. 3 shows
an example in which instances of the concept cormorant are classified using both
NCA and SNCA (using both LCS and res metrics) in Caltech40, with the GIST
feature and k = 20. The figure shows the 20 most frequently predicted concepts
for each of the methods. The classifier did not assign any test image to any of the
remaining concepts, so we did not include them in the figure. These concepts are
shown in the horizontal axis sorted in descending order by frequency. In the same
plot, the semantic similarity between the true and the predicted concept is also
shown. In this case, to measure semantic similarity we used the LCS metric, as
it is bounded between 0 and 1. For better visualization, concepts are represented
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in different colors depending on the type of animal (bird, mammal, amphibian,
invertebrate, reptile or fish), and the concept cormorant is emphasized. Similarly,
Table 4 shows the numerical results for the five most predicted concepts.

A first observation is that in NCA the correct concept is only the forth most
predicted result, being penguin the most predicted one with a much higher fre-
quency, which is still a kind of bird. However, the second most predicted concept
is gorilla, which is a kind of mammal, thus less semantically related to the correct
concept. However, in this case SNCA can return a more reasonable predictions,
in which cormorant is the most predicted concept, and also with higher accuracy,
especially using the res metric. Besides, in both cases the most confusing results
are also kinds of bird. However, in this example even using semantic relations
the result is still limited, as the input image is often confused with some kind of
mammals (e.g. horse and gorilla in the top five) with relatively high frequency.
One reason may be that the similarities between cormorant and other birds
and between cormorant and mammals are not very different, so the semantic
relations may not be fully exploited.

5 Conclusion

In this paper, we explored the integration of semantic relations into an image
classification system via distance metric learning. Thus, a distance metric learn-
ing method using both semantic and visual similarities can project the input
data to a space with a more meaningful structure. This observation motivates
the proposed SNCA method, which has been studied with different semantic
similarity measures and datasets, improving the classification performance. Al-
though the improvement is still limited in these datasets, we expect that the gain
can be higher in large scale scenarios, in which the number of concepts is high
and their semantic relations can be fully exploited. The proposed framework to
integrate semantic similarity in metric learning is generic, so we expect that it
can be extended to other learning methods.
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