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Abstract—Hair segmentation is challenging due to the diverse 
appearance, irregular region boundary and the influence of 
complex background. To deal with this problem, we propose a 
novel method, named Isomorphic Manifold Inference (IMI). 
Given a head-shoulder image, a Coarse Hair Probability Map 
(Coarse HPM), each element of which represents the probability 
of the pixel being hair, is initially calculated by exploring hair 
location and color priors.  Then, based on an observation that 
similar Coarse HPMs imply similar segmentations, we formulate 
Coarse HPM and corresponding ground segmentation (Optimal 
HPM) as a pair of isomorphic manifolds. Under this formulation, 
final hair segmentation is inferred from the Coarse HPM with 
regression techniques. In this way, the IMI implicitly exploits the 
hair-specific prior embodied in the training set. Extensive 
experimental comparisons are conducted and the results strongly 
encourage the method. The generality of IMI to other class-
specific image segmentation is also discussed. 
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I. INTRODUCTION 

Hair segmentation has attracted increasing interest, since it 
can benefit face retrieval [1], gender classification [2], head 
detection [3], hair re-colorization [4], skin segmentation [5] 
and glasses trying on [6]. Besides the above applications, hair 
segmentation can also contribute to computer graphics and 
virtual reality, such as hair styling [7] and animation [8]. 
Especially, hairstyle trying on and retrieval of pedestrians with 
specific hair color or style in video surveillance are two 
interesting applications. However, hair segmentation is a very 
challenging problem, as shown in Fig.1. First, hair color is 
very diverse and often non-uniform especially for young 
people, which implies building a universal prior color model 
very hard. Second, texture of hair region is hard to model since 
the hair may be complicated with many crimps. What’s more, 
in case of low resolution, texture feature might disappear. 
Third, as a kind of flexible object, the outer contour of the hair 
region may be very irregular. Finally, the background or the 
clothes might be quite similar to the hair region in color or 
texture, which occurs very often in video surveillance.   

A. Related previous work 

Generally speaking, hair segmentation belongs to a special 
type of image segmentation, i.e., class-specific object 
segmentation. There have been many researchers addressing 
the problem [9-15], by using either supervised or unsupervised 
methods. In these works, class-specific shape prior has proven 
to be valuable for segmentation. Some of these methods 

[11][12][14][15] extract the specific class by using image 
fragments, which is suitable merely for structured objects. 
Veksler [16] introduces a prior specific to the “star shape” 
objects, which additionally requires knowing the shape center. 
Other representative approaches to learn object shape prior 
include Active Shape Model [17] and Active Appearance 
Model [18], which learn point distribution model of object 
landmarks. However, it is infeasible to define semantic 
landmarks for hair contour due to its irregularity and diversity.  

As an instance of class-specific segmentation problems, 
hair segmentation is first posed, to our knowledge, by Liu et al. 
[19]. Later Kampmann [20] adopts a skin color model and 
facial location features to segment a head into face, ears, neck 
and hair regions. Wang et al. [4] proposed an exemplar-based 
model, which cannot deal with multi-pose cases. Moreover, 
most recently proposed methods [1][5][21][22]  perform hair 
segmentation  via three steps: 1) Finding initial hair pixels 
(seeds) that are surely in hair regions; 2) Building image-
specific hair color model and predict the probability of  each 
pixel being hair/background; 3) Performing segmentation 
based on the probability. Nevertheless, the above methods 
often fail to work when the neighboring regions are similar to 
hair regions in color or texture, e.g. clothes with similar colors 
to hair or trees as shown in Figure 1.  

To solve the problem, a natural idea is to explore hair- 
specific priors to reject false regions. The method in [6] 
employs active contour [23] to fit the upper hair shape model, 
but the landmark definitions are not so accurate and it can only 
get the upper hair parts. In [22] and [5], the methods are apt to 
apply average shape models on all images, which neglect the 

Figure 1: Challenging examples for hair segmentation1. The first
row gives original images. Red parts of the second row show
segmentation results with single hair location model while blue
parts of the third row are results with our proposed method.   

1Some faces are blurred in this paper for privacy issue. 



peculiarity of different instance shapes. Although they can 
reject some ‘impossible hair shapes’, it may also reject some 
true hair shapes occurring not frequently.  

In all, the study on hair segmentation is still in an exploratory 
stage and current methods cannot work well in complex cases. 
Although image-based (bottom-up) methods like Graph Cut 
[24] have been employed, very few works on learning hair-
specific prior, like ‘how to infer segmentation’, from a set of 
training samples, have been addressed.  

B. This paper 

As shown in Fig.2, given a training set containing head 
images and ground truth, our goal is to infer the segmentation 
for a test image by implicitly or explicitly exploiting the hair-
specific prior in it. First, for each sample in the training set, we 
calculate a coarse hair probability map (Coarse HPM) by 
exploring the information of the detected face and hair color 
model. Then the problem can be converted to how to infer 
segmentation from the Coarse HPM. We are motivated by the 
observation: Coarse HPMs and ground truth segmentations 
have similar structures, which can be seen from the examples 
in Fig.2. Based on this observation, the Coarse HPM and 
Optimal HPM (i.e., ground truth segmentation) are formulated 
as a couple of manifolds that are isomorphic. The manifold 
formulation is valid because the hair contour is irregular and 
even unkempt, thus forms a non-linear distribution. 

 Under this isomorphic manifold formulation, we propose 
Isomorphic Manifold Inference (IMI) method to compute a 
more accurate HPM (Refined HPM), by employing some 
regression techniques [25]. In some sense, our IMI is a ‘noise-
filtering’ procedure, which exploits the hair prior implied in 
the training set to refine the Coarse HPMs. In IMI, appropriate 
constraints are imposed on regression models, which can 
assure that only the training samples, the shapes of which are 
related to the input, are utilized. 

 A recent class-specific segmentation method similar to 
ours is [26], which, however, adopts a different manner by 
using kernel principal component analysis 

The rest of the paper is organized as follows: Sec.0 
presents the formulation and implementation of the proposed 
method. Then Sec.III presents experiments to validate our 
method and Sec.IV concludes the paper.  

II. METHOD  

Given a head-shoulder image, a coarse hair probability 
map	is first calculated. With this Coarse HPM as input, our 
goal is to infer the Optimal HPM	, by learning from the 
training images with their Coarse HPMs and Optimal HPMs. 
We will first describe how to calculat the Coarse HPM and 
then give the detailed description of the IMI method. 

A. Automatic generation of the Coarse HPM 

The main procedure, as shown in Fig.3, includes the 
following steps: 1) perform face/head detection and coarsely 
normalize the image (Fig.3(a)); 2) choose seed pixels that 
reliably belong to hair (Fig.3(c)); 3) learn the image-specific 
hair color model based on the seeds and predict the Coarse 
HPM (Fig.3(e)). The steps are elaborated as follows: 

1) Hair seed selection using Bayesian model 
To choose seed pixels which are surely hair pixels, the hair 

color and location knowledge are both used by using a 
Bayesian model, similar to [22]. The location prior information 
is represented by location prior by Hair Occurrence Prior 
Probability (HOPP) for each pixel. Fig.3(b) illustrates the 
visualization of HOPP which is learned from 800 normalized 
images with labeled ground truth. Moreover, we learn a 
Generic Hair Color Model (GHCM) towards RGB values from 
a labeled set. The GHCM is represented by Gaussian Mixture 
Model (GMM) distribution and learnt using Expectation-
Maximization (EM) algorithm. Thirteen Gaussian components 
are preserved for GHCM in our implementation. 

After learning the GHCM and HOPP, we combine the two 
models with Bayesian framework. The weights of color and 
location model are set to be 0.6 and 0.4 respectively. Then 
certain pixels that are surely hair pixels can be chosen. Unlike 
[22], which performs pixel-wise choosing, our model operates 
in region-wise mode based on the over-segmented regions. The 
Mean Shift [27] method is adopted to perform over-
segmentation. Hair seed regions are shown in red in Fig.3(c). 

2) Online learning of hair color and the HPM predicting 
With selected hair seed regions, an Image-specific Hair 

Color Model (IHCM) can be learnt with EM algorithm. The 
hair color is modeled by five Gaussian components. Fig.3(d) 
shows the hair probability map, predicted IHCM. Combining 
this model with HOPP, the Coarse HPM is calculated in pixel-
wise mode. The weight of the image-specific color model is set 
to be 0.7 when calculating Coarse HPMs. The Coarse HPM is 
shown in Fig.3(e). Additionally, Fig.3 (f) is the Refined HPM, 
produced by the IMI method, elaborated in the next subsection. 
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Figure 3: An example of hair segmentation procedure. 
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B. Isomorphic Manifold Inference for hair segmentation 

Our idea is to learn the relationship between the Coarse 
HPM of a test image and that of training ones, and then apply 
this relationship to pursuit the desired Optimal HPM. Our 
assumption is that the Coarse HPMs and Optimal HPMs have 
the same distribution. Specifically, we formulate the Coarse 
HPM and the Optimal HPM as a couple of isomorphic 
manifolds, as shown in Fig.4. The method includes two steps: 
1) learn the relationship between the Coarse HPM of a test 
image and that of the training images; 2) transfer the 
relationship to the Optimal HPMs to produce an approximation 
of ‘Optimal HPM’ for the test image.  

1) Learning 
We discuss how to learn the relationship under different 

assumptions of the manifold geometry: 1) the data points on 
the manifold are locally linear and each point can be linearly 
reconstructed by its neighbors; 2) the data points on the 
manifold are globally linear and each point can be 
reconstructed by all samples.  

Each HPM, denoted as a feature vector, represents a point 
in one of the two manifolds, shown in Fig.4. For an image I, 
We define x , y  as two p-dimensional column vectors. x is a 
Coarse HPM and y

 
is an Optimal HPM of I.

 
 For clarity, let 

x s , ys  
be the Coarse HPM and Optimal HPM vector of a 

training image and x t , yt  be vectors of a test image. Let 
SX  

be a p N´  matrix, with its column being the training Coarse 

HPMs x s .Then the object functions and their solutions, 

corresponding to different geometry properties of the HPM 
manifolds, are discussed as follows: 

a) Under the locally linear assumption, we choose its k nearest 
neighbors (kNN) from the training set to

 
represent the input 

Coarse HPM.
.
 The optimal weights can be achieved by:

 
2

x (x )

ˆ argmin x x
s t

kNN
t s s

b
b b

Î

= - å
N

, (1) 

where N denotes the neighbors of x t . In our 

implementation, the normalized similarity between x s and x t  

is utilized as the weight sb .  We call this case as ‘kNN 

regression’ briefly. 

b) Under the global linear assumption, each point on the 
manifold can be reconstructed by all N samples in the training 
set. The most popular estimation method of the reconstruction 
weights is least squares (LS) [25]. In the approach, the 
coefficients b can minimize the residual sum of squares 
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To achieve a bias-variance tradeoff, we add a regularization 
term, i.e.  
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which is called Ridge regression (RR) [28]. The 
corresponding solution is  

( ) 1ˆ xridge T T
S S ridge S tX X I Xb l

-
= + . (5) 

Likewise, if we replace the L2-norm regularization term in 
Eq.(4) with  L1-norm, then the target function becomes the 
Lasso [29]:  
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An equivalent way to write the problem is  
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For small value of the bound t, Eq.(7) has a sparse solution, by 

causing some of the coefficients of x s  to be zero. The Lasso 

coefficients can be solved by a minor modification of the 
efficient Least Angle Regression (LARS) algorithm [29].  

2) Transferring 
We have presented how to learn the weights of an input 

HPM represented by others on the Coarse HPM manifold, 
under different assumptions of data distribution. Now the 
weights can be transferred to Optimal HPM manifold and 
explored to approximately infer the Optimal HPM: 

? 

Figure 4: Illustration of our IMI method.  
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Note that ŷt  is not a hard map, but a soft map with real values 

in the range of [0, 1]. We call ŷt  the Refined HPM, which is 

more accurate than the Coarse HPM x t . That is because ŷt is 

a linear combination of the ground segmentations, which can 
reduce some noise effects in the Coarse HPM. An example can 
be seen from Fig.3(e) and Fig.3(f), in which the Refined HPM 
suppress the noise of some confusing backgrounds.  

Based on the Refined HPM obtained, one way to get the 
final segmentation is to set a threshold (strategy (a)). 
However, we exploit the Graph Cuts algorithm instead 
(strategy (b)), in order to make the final segmentation more 
smooth and make the fore/background regions more 
continuous. These two different strategies will be compared in 
Sec.III.D.  

III. EXPERIMENTS 

A. Database and measurement 

1) Database 
We collect two challenging databases from Internet with no 

overlapping with each other. One is for performance 
evaluation while the other is used to train hair color and 
location models (GHCM and HOPP). The evaluation database 
includes 3800 images, with a large range of variations in head-
shoulder poses, hair styles, hair colors, illustration and 
backgrounds. Among these, there are 2900 near-frontal images 
and 900 non-frontal ones. The training set contains 1000 head-
shoulder images. Since non-frontal images are really not easy 
to collect, the training images are near-frontal or with little 
pose variations.  

In the experiments, all head-shoulder-images are aligned to 
the size of 80x100 pixels according to head rectangle position 
and the ground truth of hair regions are labeled manually.  No 
other preprocessing is conducted. Some examples of 
normalized images have been shown in Fig.1 and Fig.2. 

2) Measurement 
Performances are evaluated by assessing the consistency of 

automatic segmentation and the manually labeled ground truth 
in terms of the F-measure, defined as 2PR/(P+R). P stands for 
the precision which calculates the hair pixels of automatic 
segmentation overlapping with the ground truth and R stands 
for recall which measures hair pixels of the ground-truth 
overlapping with automatic segmentation.. As F-measure is 
defined at all points on the precision-recall curve, the 
maximum F-measure score for each method is reported. 

B. Experimental set-up 

To investigate the performance of the proposed method, two 
experiments are conducted: 1) Sec.III.C compares the 
performances of different regression techniques for IMI; 2) 
Sec.III.D compares our method with other existing ones. 

Specifically, we randomly select 2000 images as the basis 
(training set) and the rest 1800 are for evaluation. Then 

according to results in experiment 1), we choose an 
appropriate regression technique for IMI and compare it with 
other existing segmentation method in experiment 2). 

C. Evaluation of different regression methods 

In this section, we will evaluate different regression 
techniques and analyze the distribution of the HPMs. The 
performances of the following regression methods will be 
compared: kNN regression, least square, Ridge regression and 
the Lasso. Specifically, the LARS is employed to solve lasso 
coefficients. Considering the speed of regression, all HPMs are 
downsampled to 40×50 pixels. It should be noted that the 
resulted Refined HPM (Eq.(8)) is cut by threshold 0.5 to 
produce the segmentation. 

Fig.5 shows the results, from which it can be obviously 
seen that Ridge regression significantly outperforms least 
square. That is because least square considers all basis Coarse 
HPMs, which bring too many unpredictable errors. Ridge 
regression performs superior to lease square, since it can trade 
a little bias on the Corse HPM for a large reduction of the error 
influences. Nevertheless, neither of the two solutions is 
satisfactory. The reason maybe is that the globally linear 
assumption on the data points on manifolds seems not so 
appropriate. In contrast, kNN regression, which considers only 
the neighboring similar samples, performs better. Based on the 
locally linear assumption, kNN regression can significantly 
depress the error influences from samples, which are far from 
the input. The experimental result supports more on this locally 
linear assumption. 

As another point of view, kNN regression can be seen as a 
method of variable selection [25]. The problem is that setting 
the parameter k to be the same value for different images is not 
reasonable. The Lasso, fortunately, can solve the problem. It  
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applies the sparse constraints and can adaptively cause some 
coefficients to be exactly zero. Note that in Fig.5 the Lasso 
performs better than kNN regression. 

Additionally, Fig.9 plots the Ridge and Lasso solution 
coefficients for the input image. It can be seen that compared 
with Ridge regression, the Lasso coefficients are much more 
sparse. Fig.10 gives the corresponding samples with the largest   

Lasso coefficients (plotted in Fig.9). Note that most of these 
hair styles appear similar to the style of the input image. This 
indicates that Lasso provides a compact representation of the 
HPM, while rejecting error effects from many other samples. 

As for the effects of the parameters, Fig.6 gives the F-
measure with the varying ridgel  in Eq.(4) for Ridge regression. 

Higher  ridgel  means more shrinking of coefficients, which 

also means the higher variances of the data distribution. 
Moreover, Fig.7 gives kNN regression performances varying 
with the number of neighbors. The best result is obtained when 
only 8 nearest neighboring samples are preserved. Finally,  
Fig.8 plots the F-measure as the t changes when using the 
Lasso. The parameter t is the upper bound of the coefficients’ 
 L1-norm. The smaller the parameter t is, the sparser the 
coefficients are. We achieve the best performance when t = 4, 
which also demonstrates the sparse structure of data 
distribution. 

D. Comparison with other methods 

In this section, we compare our method with latest methods: 
the Baysian  method in [22]， Graph Cut and the maximal 
similarity based region merging (MSRM) method [30].  

According to Sec.III.C, Lasso performs best for IMI to 
learn hair specific priors. Consequently, our experiments adopt 
Lasso in the learning step. The upper bound of L1-norm of 
coefficients, which is the parameter t in Eq.(7), is set to be 4.0, 
according to cross validation. After obtaining a Refined HPM, 
the two strategies (a) and (b) are evaluated respectively. We set 
the threshold T of strategy (a) to be 0.5.  Bayesian method, 
including the paramter settings, is implemented exactly as the 
literature [22] presents. For Graph Cut, it is essentially similar 
to the method in [5] which performs and updates the hair color 
model iteratively. 

Additionally, the approach of MSRM needs human 
labeling for the fore/background seed regions, which is not fair 
for other automatic segmentation approaches.Therefore, in our 
implementation the interactive  step is replaced by the 
automatic seed selection method, described in Sec.II.A. Based 

on these configurations, Table 1 tabulates performance 
comparisons of different methods. It can be easily seen that  
both of the two strategies of the proposed method achieve 
superior performances to the other methods. 

Some examples of segmentation results for different 
methods are shown in Fig.11. For our methods, we show the 
results with strategy (b). It can be seen that other than the 
bottom row in Fig.11, the rest are successful segmentation 
examples. The hair segmentation result can often be prevented 
from being influenced by the similar clothes (Row 1, 2, 4, 5,) 
and other confusing backgrounds (Row 3, 6). This is mainly 
due to the strong hair-specific prior by IMI, which learns the 
prior using the Lasso. Such IMI method tells what are 
abnormal ‘hair’ shapes and can supress the noise in the Coarse 
HPM, just like a ‘noise filter’. Therefore, the resulte will not be 
largely beyond normal hair regions. The Bayesian method and 
Graph Cuts method often fails because of inproper parameters 
for the images, while the merging strategy is not always 
effective due to unreasonalbe fore/background models. 

IV. DISCUSSION 

In this paper, we propose isomorphic manifold inference 
method for hair segmentation. The IMI method implicitly 
learns hair-specific prior information from a set of training 
samples, by using some regression techniques. Specifically, 
given an input image, a normalized Coarse HPM will be first 
calculated based on the detected face and hair color 
information. Then a Refined HPM will be calculated via IMI, 
by imposing appropriate constraints on regression models.  It 
should be noted that the IMI method do not care how to 

Table 1: Performance comparison of different methods 

Algorithm F- score Precision/Recall 

Bayesian method [22] 0.619 0.612/0.714 
Graph Cut  0.683 0.705/0.776 
Automatic version of MSRM 
[30] 

0.702 0.811/0.700 

Proposed with strategy (a) 0.794 0.830/0.789 

Proposed with strategy (b) 0.804 0.883/0.764 
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generate a coarse probability map, but only provide a manner 
for learning class-specific priors and ‘filter’ some noise of the 
coarse hair probability map. Experimental results strongly 
encourage the proposed method. Generalizing the method to 
other specific class is our future work. 
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Figure 11: Results comparison. (a) Original image; (b) Bayesian 
method; (c) Graph   Cuts (d) MSRM; (e) Proposed method. 
 


