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ABSTRACT

Detecting abnormal events in crowded scenes remains chal-

lenging due to the diversity of events defined by various ap-

plications. Among the many application situations, motion

analysis for event representation is suited for crowded scenes.

In this paper, we propose a novel abnormal event detection

method via likelihood estimation of dynamic-texture motion

representation, called Structural Multi-scale Motion Interre-

lated Patterns (SMMIP). SMMIP combines both original mo-

tion patterns and their structural spatio-temporal information,

which effectively represents localized events by different res-

olutions of motion patterns. To model normal events, the

Gaussian mixture model is trained with the observed nor-

mal events, then the likelihood estimation for testing events

is computed to judge whether they are abnormal. Meanwhile,

the proposed model can be learned online by updating the pa-

rameters incrementally. The proposed approach is evaluated

on several publicly available datasets and outperforms sever-

al other methods proposed before, which is shown that the

structural spatio-temporal information added in motion rep-

resentation helps increasing the anomalies detection rate.

Index Terms— Abnormal Event Detection, Structural

Multi-scale Motion Interrelated Patterns, Gaussian Mixture

Model

1. INTRODUCTION

Video surveillance plays an extremely important role in the

security monitoring of the square, train station, bank and air-

ports, etc. Among the many applications, detecting the abnor-

mal events automatically in the video instead of human labour

is considerably important and valuable. Abnormal event de-

tection refers to the problem of finding patterns in video da-

ta that do not conform to expected events [1], such as non-

expected objects and irregular pedestrians moving style, etc.

However, abnormal event samples are usually difficult to col-
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lect before, thus our task is a one-class classification problem,

or to detect the anomalies based on normal samples.

In crowded scenes, trajectories-based anomaly detection

methods [2, 3] may cause miss or false detections because of

usual occlusions and inappropriate interactions among mul-

tiple objects. Therefore motion-based methods [4, 5, 6, 7,

8, 9, 10] are more generally employed in the research. On

the other hand, appearance-based methods are not suited for

crowded scenes to distinguishing events due to the changing

appearances over time. However existing motion-based meth-

ods [7, 8, 9, 10] mostly depend on optical flow, which only

captures motions for successive frames and is inaccurate es-

pecially in textureless regions [11]. Consequently, better mo-

tion representation method should capture motions in differ-

ent spatio-temporal scales simultaneously even in textureless

regions.

In this work, in order to represent different resolutions

of motion patterns better, we propose the Structural Multi-

scale Motion Interrelated Patterns (SMMIP) which combines

motion features and their structural spatio-temporal informa-

tion. To avoid overfitting problem, too high dimension of o-

riginal feature is reduced by PCA-whitening method. Then

the Gaussian mixture model (GMM) is built to learn normal

motion patterns, and the likelihood estimation is computed

to judge whether one space-time patch is abnormal. To effi-

ciently adapt new video data streams, we employ an online

updates for the GMM model. The proposed approach is eval-

uated in several publicly available datasets and outperforms

several other methods proposed before. This paper has the

following two contributions:

• Motion Interchange Patterns (MIP) representation [12]

can capture more reliable motion features than optical

flow. To the best of our knowledge, this is the first at-

tempt to apply MIP representation to abnormal event

detection field;

• The Original MIP representation is combined with

structural spatio-temporal information of motion pat-

terns, namely SMMIP, which helps the learning model

capture different resolutions of motion patterns better.



The influence on the detection rate by different parame-

ters is analyzed in detail and the online GMM is updat-

ing the parameters incrementally to improve the results.

The rest of this paper is organized as follows. Section

2 discusses related works in this field, Section 3 describes

the proposed method for abnormal event detection, Section

4 presents experimental results on several publicly available

datasets, and Section 5 presents conclusion for our work.

2. RELATED WORKS

Current algorithms for abnormal event detection employ three

low-level representation schemes, namely the local descrip-

tor (STIP, etc.), optical flow, and dynamic-texture (LBP-TOP,

MDT, etc.). Zhao et al. [13] seek coordinates of space-time

interest points (STIP) and then extract HOG/HOF descrip-

tors around each such point. STIP has proven effective in

action recognition or event classification field, yet the chief

drawback is that the technique relies on the assumption that

one can reliably detect a suitable number of stable interest

points: too few may not provide enough information, while

too much may drown any informative cues. Cong et al. [7]

estimate multi-scale HOF in space-time patches to represen-

t the events. Optical flow provides strong cues for captur-

ing the local dynamics, but it commits early-on to a partic-

ular motion estimate at each pixel, and unreliable or wrong

estimates would provide misleading information. Zhao and

Pietikainen [14] extend the local binary patterns descriptor to

3D video time-varying dynamic textures, called Local Binary

Patterns-Three Orthogonal Planes (LBP-TOP). And it is suc-

cessfully applied to abnormal event detection [15]. Mahade-

van et al. [6] model appearance and dynamics in the video

scene by the mixture of dynamic texture (MDT) [16].

Meanwhile, A variety of learning models for low-level

representation have been proposed. Clustering approach-

es [2, 17, 18] have been widely used to detect unusual events

because of their good performance, where the detection is car-

ried out by finding spatially isolated points. Adam et al. [10]

monitor optical flow directions and speeds at fixed spatial lo-

cations, and determine the likelihood of new observations.

Mehran et al. [8] employ the social force model to formulate

the abnormal crowd behavior and then use Latent Dirichlet

Allocation to detect anomalies. Kim and Grauman [9] model

local optical flow with MPPCA and enforce the consisten-

cy by MRF. In [5], the spatio-temporal features are modeled

as Gaussian distributions. And a set of prototypes are main-

tained for each location in a scene, which serve as states for a

coupled hidden Markov model. In [19], a graph-based non-

linear dimensionality reduction method is used for abnormali-

ty detection. Cong et al. [7] present an algorithm for anomaly

detection based on the sparse reconstruction cost.

As said before, MIP representation can capture more re-

liable motion features than optical flow representation, also

has been applied in action recognition successfully [12]. Fur-

ther, in order to model different resolutions of motion pattern-

s in small space-time region better, SMMIP representation

combines original MIP features with their structural spatio-

temporal information.

3. ABNORMAL EVENT DETECTION BY SMMIP

The objective is to infer when and where abnormal events

happen in crowded scenes. Firstly, SMMIP feature is extract-

ed from space-time patches. Secondly, too high dimension of

original feature space is reduced by PCA-whitening method

to avoid overfitting. Thirdly, GMM is employed to learn the

normal motion patterns and detect the anomalies by online

updating the parameters incrementally.

3.1. Structural Multi-scale Motion Interrelated Patterns

For an input space-time patch, its motion feature is represent-

ed by 8-trinary-digit string of 8 channels in every pixel. Each

digit compares the compatibility of two motions with the lo-

cal patch similarity pattern: one motion in a specific direction

from the previous frame to the current frame, and another in

a different direction from the current frame to the next one. A

value of +1 indicates that the former motion is more likely, -1

indicates that the latter is more likely. A values of 0 indicates

that both are compatible in approximately the same degree.

The design of three patches enables the comparison of two

similarly scaled data points to capture the motion of the small

region around the point. The encoding scheme based on three

patches is depicted in Fig.1.

As seen in Fig.1, encoding is performed for every pixel

in every triplet of frames (previous, current, and next frame).

The SSD templates are picked from varying sn × sn pixel

patches in spatial scale, and their SSD scores for comparing

the compatibility of two motions are computed as follows:

⎧⎨
⎩

D1 =
∑sn

m=1

∑sn
n=1[I(m,n, tp(1))− I(m,n, tp(2))]

2

D2 =
∑sn

m=1

∑sn
n=1[I(m,n, tp(3))− I(m,n, tp(2))]

2
.

(1)

where temporal scale tp = [−p, 0, p] is the temporal location

for the triplet of frames, if the location of current frame is de-

noted as the origin. D1 and D2 means the SSD scores, namely

the sum of squared differences between the patch in the previ-

ous and next frame gray image I(m,n, t), respectively. Thus

different combinations of {sn, tp} represent different resolu-

tions of motion patterns in spatio-temporal scales.

All combinations of i and j are used for encoding and the

angle α between i and j is 0◦, 45◦, · · · , 315◦. For each direc-

tion channel α, the motion pattern is therefore represented by

a 64-trinary-digit code Si,j(α), which is computed as follows:



Fig. 1. The basic encoding level. Relative to the location

of the green patch with grid (center template) in the current

frame, the location of the patch in the previous and the next

frame is said to be in direction i and j respectively. The d-

ifferent motion patterns captured by different directions are

identified from 0 to 7, such as the blue patch with horizontal

line i0 in the previous frame and the red patch with vertical

line j6 in the next frame. Better view is obtained in color

version.

Si,j(α) =

⎧⎨
⎩

+1 if D1 −D2 > Θ
0 if |D1 −D2| ≤ Θ

−1 if D1 −D2 < −Θ
. (2)

Following the suppression mechanism [12], we are left

with 8 channel maps, where each pixel is encoded by one

8-trinary-digit string per channel. We treat the positive and

negative parts of the string separately and obtain a 16-bit one

C(α) = [Cpos(α), Cneg(α)]. Thus these 16 values represent

the complete motion patterns for that pixel. For each channel,

the frequency for every kind of code in Cpos and Cneg is col-

lected in small patches respectively to create 512-dimensional

frequency histogram.

As seen in our experiments, despite the success of MIP in

encoding motion, its limited scale characterization is outper-

formed by the multi-scale feature representation employed by

our method. Thus the final motion feature vector V is

V = [Fs1,t1 , · · · , Fsm,tn ] if
∑

Fsi,tj > TF , (3)

where Fsi,tj is the 512-dimensional frequency histogram in

spatial scale si(i = 1, · · · ,m) and temporal scale tj(j =
1, · · · , n). Because the anomalies can only happen in mo-

tion region, the threshold value TF is utilized to extract the

efficient foreground motion, which can reduce noise and im-

prove the efficiency.

At the basic encoding level, our method and MIP [12]

both share the use of three patches and two SSDs. Howev-

er, there are several differences between the two methods:

• MIP is restricted to the fixed spatial and temporal scale

of SSD templates and triplet of frames, respectively.

Therefore MIP is not so general to capture the differ-

ent resolutions of motion patterns well simultaneously.

However, SMMIP is more general to represent them by

combining the original fixed-scale MIP representation

and its several structural spatio-temporal scales infor-

mation.

• After basic encoding level, MIP employs k-means and

bag-of-words approach to represent each video clip for

action recognition by eight histograms (one per chan-

nel), while we focus on the representation of each

space-time patch for abnormal event detection by con-

catenating all the eight frequency histograms in ev-

ery spatio-temporal scale we consider, which is more

discriminating for representing motions of small patch

than bag-of-words method in high dimension.

In Eq.(3), SMMIP code considers multiple spatial or tem-

poral scales when m or n is assigned as plural numbers, and

SMMIP code will degenerate to MIP code when m = 3, n =
1. Moreover, the radius of the template circle (the distance

between the center point of center template and the one of its

surrounding templates, viewed as purple dotted line in Fig.1)

can be changed if necessary. By these changes our motion

representation can be flexibly applied in various situations.

3.2. Preprocessing of High Dimensional Feature

The dimension of the feature vector V is Dold = 8 × 512 ×
m×n = 4096mn, which means that even the minimal dimen-

sion is 4,096. It is too high for Gaussian model to learn and

results in overfitting. In order to avoid the dimensionality of

curse we reduce the old high dimension Dold to the new one

Dnew by PCA method. Besides, whitening method makes the

feature data independent from each other by transforming the

covariance matrix to an identity matrix. Thus the Euclidean

distance is equivalent to the Mahalanobis distance, which is a

more accurate measure of the distance between high dimen-

sional vectors.

3.3. Abnormal Event Detection by Online GMM

In the training period, we employ GMM to model normal mo-

tion patterns and estimate its parameters by Expectation Max-

imization algorithm [20]. To improve the efficiency, k-means

method is applied to initialize the clustering centers firstly.

The probability density function is

Lp = γ · log(p(V |θ)) = γ · log(
K∑
i=1

πiN(V |μi,Σi)), (4)

where θ = {πi, μi,Σi} denote the weight, mean and covari-

ance of component respectively among all the K components,



and γ is the quantification coefficient. The patch with the like-

lihood value Lp smaller than the threshold Tp is classified as

abnormal. In some specific applications, we can employ the

integrating multiple monitors scheme [10] to decrease some

unnecessary false alarms.

In order to avoid any issues with concept drift, for ev-

ery incoming V t, all the Gaussian components are checked

to choose the kth Gaussian with the highest probability in

k = argmaxi log(p(V |μi,Σi). After that, we can update

the parameters of kth matched Gaussian as follows:

⎧⎨
⎩

πt
k = (πt−1

k +Δπ)/(
∑

πt−1
k +Δπ)

μt
k = (1− β) · μt−1

k + β · V t

Σt
k = (1− β) · Σt−1

k + β · (μt−1
k − V t)T (μt−1

k − V t)
.

(5)

where β is the learning rate and Δπ (0 < Δπ < 1) is

the reward for this matched kth Gaussian. The rest un-

matched Gaussian only update their weights according to

πt
j = πt−1

j /(
∑

i π
t−1
j +Δπ), j �= k.

4. EXPERIMENTAL RESULTS

To test the effectiveness of the proposed method, we evaluate

it on three publicly available datasets, including the UCSD

Ped1 Dataset [6], the UMN Dataset [8] and the Subway Exit

Dataset [10]. Our approach has been compared with some

recent state-of-the-art methods in terms of equal error rate

(EER), rate of detection (RD) and the area under ROC (AUC)

in the UCSD Ped1 and UMN Datasets. Meanwhile, an com-

parison inside our method is reported in Subway Exit Dataset.

4.1. Parameters Discussion

Because the motion feature is trained using several parameter

and constants, some choices have to be made in the algorithm

described above, and the best results are reported below.

The reduced dimension Dnew varies from 512 to 1024.

The more spatial and temporal scales we utilize, the more re-

duced dimension we need. So is the number of GMM com-

ponents K. It is evaluated from 20 to 35 among all the exper-

iments.

SMMIP representations by several spatio-temporal s-

cale combinations {sm, tn} are designed in the experiment,

named as MIP ({s3, t1}), MIP-Time ({s3, t1,2}), MIP-Sapce

({s3, t1,2}) and MIP-TS ({s2,3, t1,2}). s2,3 means 2 × 2
and 3 × 3 SSD template in spatial scale, and t1,2 means

[−1, 0, 1], [−2, 0, 2] in temporal scale for the triplet of frames.

The threshold Θ for the SSD template is 1296 for s3 and

576 for s2 respectively. And the threshold TF = 1.6 ·pheight ·
pwidth, where {pheight, pwidth} is the size of every space-

time patch.

4.2. UCSD Ped1 Dataset

The UCSD Ped1 Dataset includes some pedestrian scenes on

campus, with 34 training clips and 36 test clips. There is a

subset of 10 clips in testing set provided with pixel-level bi-

nary masks, which identify the regions containing abnormal

events. Each clip has 200 frames with a 158 × 238 resolu-

tion. We split each frame into 25 × 25 local patches without

overlapping.

Table 1. Results on UCSD Ped1 dataset
Methods EER RD AUC

SF [8] 79% 21% 17.9%

MPPCA [9] 82% 18% 20.5%

MDT [6] 55% 45% 44.1%

Adam [10] 76% 24% 13.3%

Sparse [7] 54% 46% 46.1%

MIP 50.3% 49.7% 50.0%

MIP-Time 44.5% 55.5% 56.8%

MIP-Space 44.4% 55.6% 57.4%

MIP-TS 41.3% 58.7% 64.9%

Table 1 shows the quantitative comparison of our method

with [6, 7, 8, 9, 10], from which we can find that the perfor-

mance of our methods outperforms the state-of-the-art meth-

ods in pixel-level measurement defined in [6]. And RD in-

creases by al least 5% when considering multiple spatial and

temporal scales. Although SMMIP representations perform

almost the same in frame-level measurement (EER is around

32%, AUC is around 74%), the motion features with their

structural spatio-temporal information produces a significant

improvement in pixel-level measurement.
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Fig. 2. Pixel-level ROCs of UCSD Ped1 Dataset

In Fig.2, we compare SMMIP representations with other

methods such as MDT [6], Sparse [7], SF [8] and Adam [10],

in pixel-level measurement. It clearly shows the advantage for

considering structural spatio-temporal information. Several

detected anomalous objects in test clips are highlighted in red

rectangle in Fig.3.



Fig. 3. Some detected objects in UCSD Ped1 Dataset

4.3. UMN Dataset

The UMN Dataset consists of 3 different scenes of crowd-

ed rapid escape events, with 1,450, 4,415 and 2,145 frames

for Scene 1, 2, 3, respectively. At first, each image with a

320× 240 resolution is converted into gray image and splited

into 25× 30 sub-regions, then the motion feature is extracted

from each sub-region. The GMM is trained from the first 400

regular event frames of each scene with the others for test.
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Fig. 4. Frame-level ROCs of UMN Dataset

In Fig.4, the ROC curves of SMMIP representations in

frame-level are shown, from which we can find motion rep-

resentations in multiple scales perform better than the one in

single scale. Table 2 provides the quantitative comparisons to

the state-of-the-art methods [7, 8, 21]. The AUC of feature in

multiple scale is average 98.2% among all the three scenes,

while the one in fixed scale is average 94.9%, whose result

underscores our contribution in employing structural spatio-

temporal information to capture different resolutions of mo-

tion patterns. Our approach outperforms [7, 8] and is com-

parable to [21], which demonstrates the effectiveness of our

motion representation method. In Fig.5, some snapshots in 3

scenes are shown by the escape people marked as red regions.

Fig. 5. Sample escape snapshots in UMN Dataset

Table 2. Results on 3 scenes of UMN Dataset
Methods AUC

Chaotic Invariants [21] 99%

SF [8] 96%

Optical flow [8] 84%

Nearest Neighbour [7] 93%

Sparse [7] 99.5% 97.5% 96.4%

MIP 99.6% 94.4% 90.8%

MIP-Time 99.3% 96.5% 97.1%

MIP-Space 99.5% 97.2% 96.0%

MIP-TS 99.2% 97.8% 97.8%

4.4. Subway Exit Dataset

The Subway Exit Dataset is a subway surveillance video in

exit gate (43 minutes long with 64,900 frames). For simplici-

ty, the original frames is resized from 512× 384 to 320× 240
and the new frames are divided into 39 × 39 local patches

without overlapping. Then the first 8 minutes (the first whole

round for get-off of the train) are collected to learn the normal

motion patterns.

Fig. 6. Some detected events in Subway Exit Dataset are

shown, where (a) is cleaning, (b) is motion blur, (c) is wrong

direction and (d) is watching around.

Table 3. Results on Subway Exit Dataset

Methods Wrong Cleaning Misc False

Direction Alarm

Ground Truth 9 4 3 0

MIP 8 3 2 5

MIP-Time 9 3 2 3

MIP-Space 9 3 3 3

MIP-TS 9 4 3 2

Due to no ground truth labels in this video, other re-

searchers define different types of events respectively [9, 10,

13], therefore it is difficult to compare our method with other-

s. We define 3 different types of abnormal events: 1) walking

in the wrong direction; 2) cleaning; 3) misc like watching

around and motion blur, etc. There is only the comparison

of SMMIP representation below. Quantitative comparison re-

sults are shown in Table 3, and some detected abnormal events

are shown in Fig.6. Although all the motion representations



can detect the abnormal events we define, motion represen-

tation with structural spatio-temporal information results in

more accurate detected regions and less false alarms.

5. CONCLUSION

This paper proposed a novel Structural Multi-scale Motion In-

terrelated Patterns for abnormal event detection based on the

Gaussian likelihood estimation. By incrementally updating

the components of the Gaussian mixture model, our method

supports online event detection. In order to capture differ-

ent resolutions of motion patterns, the motion representation

is combined with its structural spatio-temporal information.

Experimental results on several publicly available datasets

demonstrate the effectiveness of the proposed algorithm, and

the performance can be improved significantly compared to

the state-of-the-art methods. We believe that this kind of mo-

tion patterns in this work can also apply to other applications,

such as event or action recognition.
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