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ABSTRACT

We propose a novel salient region detection algorithm by
texture-suppressed background contrast. We employ a struc-
ture extraction algorithm to suppress the small scale textures
which are supposed to be not sensitive for human vision sys-
tem. Then the texture-suppressed image is segmented into
homogeneous superpixels. Motivated by the observation that
the spatial distribution of the background has a high probabil-
ity on the boundaries of images, we estimate the background
as superpixels near the image boundaries. The saliency of
each superpixel is then defined as the summation of its k
minimum color distances to the estimated background super-
pixels. Finally a post-processing process involving spatial and
color adjacency is employed to generate a per-pixel saliency
map. Experimental results demonstrate that the proposed
method outperforms the state-of-the-art approaches.

Index Terms— Salient region detection, Background
contrast, Texture suppression, Superpixels

1. INTRODUCTION

Human vision system (HVS) can process massive visual
information at a glance and fixate at salient objects in a
scene. Extensive efforts have been devoted to the research
of bottom-up saliency models to achieve equivalent function-
ality. Saliency estimation can be applied to many computer
vision tasks, such as object detection [1], image segmentation
[2], object tracking [3], etc.

One of the early works on saliency estimation is the
bottom-up method proposed by Itti et al. [4], which deter-
mined visual saliency as center-surround contrast using a
difference of Gaussians (DoG) approach. Gao et al. [5] uti-
lized the mutual information between the feature distribution
of center and surround regions to estimate saliency. These
approaches [4, 5, 6] focus on predicting human fixations in
natural images, rather than locating salient objects.

Recent works on saliency detection have paid more at-
tention to salient object detection [7, 8, 9, 10, 11, 12, 13,
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14]. Various criterions on measuring contrast and global rar-
ity have been explored. Zhai et al. [13] defined pixel-level
saliency based on the pixel’s contrast to all other pixels of
the image. Feng et al. [12] measured the saliency of an
image window as the cost of composing the window using
the remaining part of the image. Cheng et al. [9] produced
region-based saliency maps using the region’s contrast and s-
patial distances to other regions in the image. Perazzi et al.
[10] proposed a contrast based filtering algorithm and defined
superpixel-level saliency by combining two contrast measures
namely element uniqueness and distribution.

Motivated by the observation that the image boundaries
are mostly background, we estimate the background as the
regions near image boundaries and define saliency as the con-
trast with the background, rather than globally with all the
other regions. Similar idea has been utilized in Wei et al. [11],
which defined the saliency of an image patch as its geodesic
distance to the background. Different from [11], which re-
lied on the connectivity prior of background, we explore the
homogeneous nature of background and define the saliency
of an image region as the summation of its k minimum color
distances to the background regions. In the proposed algo-
rithm, we adopt superpixel segmentation to generate homoge-
neous superpixels. Moreover, a pre-processing step is applied
to suppress the small scale textures in images, since human
vision system is not sensitive to such small variances when
detecting salient locations.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces details of the proposed approach. Section 3
presents experiments and the conclusion follows in Section 4.

2. PROPOSED APPROACH

We propose a novel approach to detect salient regions in nat-
ural images through Texture-suppressed Background contrast
(TB for short). The framework of the proposed approach is p-
resented in Fig. 1. A structure extraction algorithm is applied
to suppress the small variances in textures. Then the texture-
suppressed image is segmented into superpixels. The back-
ground are estimated as the superpixels near image bound-
aries, according to the fact that image boundaries are mostly
background. We define our per-superpixel saliency as its con-
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Fig. 1. Framework of our approach. (a) Input image (b) Texture-suppressed image (c) Superpixel segmentation (d) Estimated
background(superpixels in black) (e) Superpixel saliency (f) Per-pixel saliency.

trast with the estimated background. Finally, the saliency of
each pixel is assigned as a weighted linear combination of the
saliency of its surrounding superpixels.

2.1. Texture Suppression

When human detect salient regions in natural scenes, exten-
sively existed small scale textures, such as grass and foliage,
do not catch attention at first glance. Some physiology ex-
periments [15] have also shown that human vision system is
more sensitive to patterns in middle frequencies than those in
high frequencies. For example, we are attracted by the orange
flower when seeing Fig. 1(a) at first glance, while ignore the s-
mall variations of leaves in the right-bottom region. However,
the contributions of such little variations within textures may
accumulate and influence the saliency computation in compu-
tational models.

We employ the structure extraction algorithm [16] to s-
mooth out the local gradients in textures while preserve the
global structures of the objects. The objective function in [16]
is expressed as:

argmin
S

∑
p

(Sp− Ip)2+λ · (
Dx(p)
Lx(p) + ε

+
Dy(p)
Ly(p) + ε

), (1)

where I is the input image, p indexes 2D pixels, S is the
resulting structure image, Dx(p) and Dy(p) are sum of abso-
lute spatial difference in the x and y directions weighted by
a gaussian function within a window for pixel p, Lp(x) and
Lp(y) are modulo of sum of directional spatial difference in
the x and y directions weighted by a gaussian function with-
in a window for pixel p. The first term (Sp − Ip)2 is the s-
moothing term which ensures the smoothed image not deviate
too much from the input. The second term is the regularizer
named as relative total variation which enhances the contrast
between texture and structure. Different values of the parame-
ter λ in Eq. 1 produce images with various smoothness. Larg-
er the λ is, smoother the image is. As shown in Fig. 1(b)
(λ = 0.05), both background and foreground become more
homogeneous after suppressing the textures, while the dissim-
ilarities between foreground and background are preserved.

The texture-suppressed image is then segmented into
non-overlapping superpixels, which have homogeneous color

or texture. One property of superpixel is preserving object
boundaries: all pixels in a superpixel mostly belong to the
same object or stuff. We use Simple Linear Iterative Cluster-
ing (SLIC) [17], which adheres to boundaries well, to get the
superpixels as shown in Fig. 1(c).

2.2. Saliency Estimation via Background Contrast

We estimate the background based on the background prior
that the image boundaries are mostly background and salient
objects rarely touch image boundaries. The soundness of such
prior can be found in [11].

For each image, we define the estimated boundary, B̂, as
the superpixels involving any pixel whose closest distance to
image boundaries is within n pixels. That is,

B̂ = {Si|min{x, y, |W −x|, |H − y|} ≤ n, ∃Ip ∈ Si}, (2)

where (x, y) denotes the position of a pixel Ip, Si is a super-
pixel, W and H are the width and height of the input image,
respectively. We choose n = 10 as a typical estimation. An
exemplar of estimated background is shown in Fig. 1(d).

The background contrast of each superpixel is defined to
be the summation of its kNN color distances with the super-
pixels in the estimated boundary B̂. We use the CIELab color
space and the distance is measured in Euclidean space.

Let the position and color of Si be pi and ci which are the
average of those pixels belong to the superpixel, respectively.
The distances between superpixel Si and every superpixel Sj
in the estimated background B̂ are denoted as

Di = {‖ci − cj‖2 | ∀Sj ∈ B̂}. (3)

Then we calculate a permutation (reordering) of the dis-
tance set Di as

D̃i =< di1, di2, · · · , diM >, di1 ≤ di2 ≤ · · · ≤ diM . (4)

where M is the number of superpixels in B̂. We define the
saliency of each superpixel as the summation of its kNN
color distances with the estimated background superpixels,
namely the background contrast, that is

Sa(Si) =

k∑
j=1

dij . (5)



Fig. 2. Background contrast of the foreground and the re-
mained background in MSRA-1000 dataset [7]. The red his-
togram and the blue histogram show the distributions of back-
ground contrast of the remained background and foreground,
respectively. The overlapped bars are highlighted in green.
Horizontal axis stands for background contrast values.

We denote the superpixels in foreground area of ground
truth labeling as F , and the superpixels in remained back-
ground (namely the background area in ground truth labeling
excluding the estimated background) as B. We verify our
saliency definition by comparing the background contrast of
both F and B. We calculate the average background con-
trast of superpixels in F and B of each image in MSRA-
1000 dataset [7]. The histogram of background contrast of
the remained background and that of the foreground are illus-
trated in Fig. 2. The parameters used in the experiment are
λ = 0.05, N = 100, k = 5. N denotes the number of super-
pixels which does not influence the final results much, so we
fix N to be 100 in subsequent experiments as well.

As shown in the red histogram, average background con-
trast of remained background B are mostly near zero, while
the average background contrast of foreground F shown in
blue histograms are larger. Some conclusions can be obtained
that: (1) In a texture-suppressed image, the estimated back-
ground based on background prior is able to represent most
background variations in the image. (2) Superpixels in F and
B are approximately separable using background contrast.

Therefore the saliency defined in Eq. 5 is expected to as-
sign large values to the superpixels in foreground and small
values to the ones in background. Then we can separate the
foreground and background to some extent.

Finally, a per-pixel saliency map is obtained by exploiting
the fact that pixels with similar position and color shall have
similar saliency values. We define the saliency of each pixel
as a weighted linear combination of the saliency of its sur-
rounding superpixels. The initial saliency value of each pixel
is assigned as that of its superpixel. Then the refined saliency
map is computed by choosing a gaussian weight that involves
position and color information similar as in [10].

3. EXPERIMENTS

We evaluate our approach and compare it with several state-
of-the-art methods on the publicly available MSRA-1000
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Fig. 3. Experimental results with different parameters. (a)
Precision,recall and F-measure of different texture smooth pa-
rameters λ in Eq. 1 with adaptive threshold, N = 100, k = 5.
(b) PR curves with different k in Eq. 5, N = 100, λ = 0.05.
(The curves are nearly overlapped.) (c) Exemplars of saliency
map with different k.

dataset of 1000 images provided by Achanta et al. [7], which
provides human labeled object segmentation masks.

We adopt the same performance evaluation methods as [7]
and [10]. In the first evaluation, a precision-recall (PR) curve
of a saliency map is obtained by varying the threshold from
0 to 255. Precision measures the percentage of salient pix-
els correctly assigned, while recall is the fraction of detected
salient pixels with respect to salient pixels in ground truth.
The average precision-recall curve is generated by combining
the results of all the 1000 test images.

In the second evaluation, we compare the performance
when applying the adaptive threshold T proposed by [7], de-
fined as twice the mean saliency of the image in Eq. 6, where
W andH are the width and height of the input image, respec-
tively. In addition to precision and recall, we compute their
weighted harmonic mean measure of F-measure defined by
Eq. 7. We set β2 = 0.3 to weigh precision more than recall
as suggested in [7, 9].

T =
2

W ×H

W∑
x=1

H∑
y=1

Sa(x, y) (6)

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

(7)



3.1. Performance of different parameters

We investigate the influence of parameters in our algorithm.
The precision, recall and F-measure using adaptive thresh-
old with different texture smoothness λ in Eq. 1 are shown in
Fig. 3(a). We can see that the system with λ ∈ [0.05, 0.09]
performs fairly well. Compared with original images, texture-
suppressed images yield better results. Texture suppression
makes the background and foreground more homogeneous
which enables the saliency computation to be more robust to
the small variations in both foreground and background.

The PR curves with different k in Eq. 5 are shown in
Fig. 3(b). The performances with different k do not change
much, while the results with k = 3, 5, 7 are a little better than
those with k = 1 and k = 9. The proper k (e.g. k = 5)
can deal with corruptions in background estimation, thus gets
more robust results in the case that foreground patterns ap-
pear in image boundaries. Please note that [11] initializes the
saliency of image boundaries by using a saliency detection al-
gorithm [18] to boundary patches to alleviate such problem.
Some exemplars are shown in Fig. 3(c). We can see that prop-
er k performs more robustly when dealing with background
prior failure. We choose k = 5 for subsequent experiments.

3.2. Evaluation of our approach on MSRA-1000 dataset

We compare our method(TB) with some other approach-
es: the spectral residual approach(SR)[8], Zhai’s method
(LC)[13], frequency-tuned approach(FT)[7], histogram based
contrast(HC) and region based contrast(RC)[9], geodesic
saliency(GS)[11](we use GS SP in following comparison-
s), saliency filters(SF)[10] and the low rank matrix recovery
approach(LR)[14]. Each method outputs a full resolution
saliency map that is normalized to range [0, 255]. The PR
curves of all the approaches on the MSRA-1000 dataset[7],
as well as comparisons of precision, recall and F-measure
with adaptive threshold are shown in Fig. 4(a) and (b), re-
spectively. Some exemplars of these methods are illustrated
in Fig. 4(c).

We conclude from the comparisons that: (1) Our algorith-
m outperforms the previous methods. Especially, it perform-
s robustly when dealing with textured and cluttered images
as shown in Fig. 4(c). (2)Background contrast with texture
suppression is an effective measurement to distinguish fore-
ground from background, as well as decrease the saliency val-
ues of background.

4. CONCLUSIONS

We propose a salient region detection algorithm by texture-
suppressed background contrast and improve the state-of-the-
art approaches. Inspired biologically by the fact that human
vision system is not sensitive to patterns in high frequencies,
we suppress the small variations in texture regions, which
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Fig. 4. Results on the MSRA-1000 dataset[7]. (a) PR curve
compared to other methods. (b) Comparison to other methods
of precision, recall and F-measure when applying adaptive
threshold. (c) Visual comparison of previous approaches to
our method (TB) and ground truth (GT). Due to space limit,
only the results from five other methods that give good PR
curves in (a) are presented.

proves to be a good way of exploiting the homogeneous na-
ture of the background. We define the saliency as the summa-
tion of k minimum distances based on background contrast,
which is robust and achieves better overall performance. In
our future work, we will investigate discriminative descrip-
tions of foreground and background and obtain more accurate
estimation of the background.
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