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ABSTRACT

Hierarchical classification models have been proposed to
achieve high accuracy by transferring effective informa-
tion across the categories. One important challenge for
this paradigm is to design what can be transferred across
the categories. In this paper, we propose a novel method
to learn a sharing model by taking advantage of multi-level
feature representations. Unlike many of the existing meth-
ods which learn the sharing model based on identical feature
space, multi-level feature detectors enable our model to cap-
ture rich visual information in hierarchical category structure.
Moreover, hierarchical classifier parameters associated with
multi-level feature representations are learned to model the
visual correlation in the hierarchy. The experimental results
on Caltech-256 dataset and ImageNet subset demonstrate that
our method achieves excellent performance compared with
some state-of-the-art methods, and shows the advantage of
multi-level information transfer.

Index Terms— Sharing model, multi-level feature repre-
sentations, object categorization

1. INTRODUCTION

Visual classification with many classes is one of the core
problems in computer vision, and poses significant chal-
lenges. Due to the imbalance of class distribution, the per-
formance of classification model on rare categories may be
limited by insufficient training data. It is nature to cluster sim-
ilar categories into groups, and generate a tree structure [1, 2].
Based on the tree-shaped hierarchy, the classification models
for multiple classes can be trained jointly which enables rare
category to benefit from other related categories. Many meth-
ods have been developed to share various information (e.g.,
a global prior [3, 4], statistical parameters [5, 6, 7, 8]) across
multiple classes, and most of them train the hierarchical mod-
els on identical feature space. However, designing what can
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be transferred across categories is a critical issue, which is
worth exploring for sharing model learning.

In this paper, we propose a novel approach which takes
advantage of multi-level feature representations to learn a
sharing model. As shown in Fig. 1(b), multi-level feature
detectors (filters) can capture various patterns from image
data, from simple oriented edges, to mid-level patterns in-
dicative of object parts, and high-level ones indicative of
objects. Our main contribution is to exploit these features to
learn a hierarchical sharing model which can transfer multi-
level information among the classes. As shown in Fig. 1(a),
the model parameters learned in the hierarchy are associated
with the feature detectors of different levels. For the root
(global) node, global parameters (w0) are associated with the
representations generated from global feature detectors. The
group parameters (w1

1, w
1
2) are learned to select the features

which are useful to describe the common information in the
group, and the parameters can be shared by child classes.
For example, leg is usually captured in {horse, dog}, and
wheel tends to appear in {car, motorbike, tricycle}. The two
features are corresponding to large weight in group animal
and vehicle respectively. Specific parameters (w2

1, w
2
2, ...) are

associated with high-level feature detectors to discover more
class-specific information towards classes. The experimental
results demonstrate that our method benefits from multi-level
feature representations and achieves excellent performance.

2. MULTI-LEVEL FEATURE LEARNING

Feature learning aims to extract and organize discriminative
information from data. Multi-level feature detectors learned
with deep architecture [9, 10, 11, 12, 13] have great advan-
tages over the ones extracted by feature engineering with shal-
low structure [14, 15, 16, 17, 18, 19]. In deep architecture,
simple features are learned first, and then more complex fea-
tures are built up by composing the simpler ones together. To
deal with realistic-sized (e.g., 200 × 200 pixel) images, we
leverage convolutional network architecture [9, 11] to gener-
ate representations. The architecture is composed of multiple

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20145931



Vehicle Animal 

Horse Dog Car Motorbike Tricycle 

Global 𝐰0 

𝐰1
1 

Global features Group features 

… 

… 

Class-specific features 
𝐰2
1 

𝐰1
2 𝐰2

2 𝐰3
2 𝐰4

2 𝐰5
2 

(a) (b) 

Fig. 1. Overview of our approach. (a) Sharing model with multi-level feature representations. Global parameters (w0), group
parameters (w1

1 ,w1
2), and specific parameters (w2

1, w
2
2, ...) are learned in the hierarchy to capture information from multi-level

features. (b) Visualization of the feature detectors in each layer. The colorful histograms in (a) illustrate the group parameters,
and the colors are corresponding to the box colors on group features in (b). For internode Animal, the features indicative of
animal parts are associated with large weight. For Vehicle, the features captured wheel are associated with large weight. The
specific parameters on the five leaf nodes have maximum value on the class-specific features with blue boxes in (b) respectively.

alternating layers of convolution and pooling operator.
Convolution: In convolutional layer, we apply convolu-

tional sparse coding (deconvolution) [9] which attempts to
minimize the reconstruction error of the input image on an
over-complete set of feature maps. Consider the first layer,
for input image x, the reconstruction can be formulated as:

L(x, v, f) =
1

2

∥∥x− K0∑
k=1

fk,0 ∗ vk,0
∥∥2 + K0∑

k=1

|vk,0|, (1)

where ∗ is the convolution operator. fk,0 denotes the m ×m
feature detector (filter) common to all the images. vk,0 de-
notes the feature map specific to each image. K0 is the num-
ber of filters. v̂ = argminv L(x, v, f) is a unique solution,
which can be gained based on the sparsity constraint on v.

Pooling: In pooling layer, max-pooling operates in local
neighborhood to shrink the outputs of the convolutional layer.
Specifically, each unit in pooling layer computes the maxi-
mum (absolute) value in a small region of feature maps, and
the locations. The outputs (pooled maps p and locations s) are
used in the next convolutional layer. This operator enables the
representations of subsequent layers to be invariant to small
translation, and to capture the patterns at a larger scale.

Based on the hierarchical feature learning, multi-level vi-
sual patterns can be captured by the global features, group
features as well as specific features. As shown in Fig.1(b) (vi-
sualization according to the strategy in [9]), simple patterns
can be firstly captured, such as orientated edges, which can
be detected in all the categories. Thus, they can be regarded
as global features shared by all the classes. Mid-level pat-
terns indicative of object parts (e.g., wheel and animal head)
can be discovered, which have significant statistical distribu-
tions, such as wheel can be frequently found in vehicle and
animal head tends to appear in animal. These features can
be shared by a group of related classes as group-based prop-

erties. Moreover, high-level patterns describe specific object
classes which can give the object an overall description. We
employ another spatial pyramid pooling [16] on feature maps
to generate feature vectors, which represent the statistical dis-
tribution of the features in an image. The generated feature
vectors are denoted with z0, z1 and z2.

3. LEARNING SHARING MODEL WITH
MULTI-LEVEL REPRESENTATIONS

3.1. Traditional Separate Classification Model

Consider a classification problem with D = {(xi, yi)}Ni=1

of N labeled training images. Each example belongs to one
of T classes, yi ∈ {1, 2, ..., T}. In the standard classifica-
tion model learning, the problem can decompose to T sub-
problems, which amounts to T separate binary (one-versus-
all) classification models without sharing any information be-
tween them. Assuming that these models are trained based on
the feature set Z ⊂ Rm:

min
W

T∑
t=1

(
`(D,Z,wt,Ft) +

λ

2
‖wt‖2

)
, (2)

where wt denotes parameter vector corresponding to the t-
th classification model, and W denotes the parameter ma-
trix composed of wt as columns. ‖wt‖2 is the regularization
term, which can be regarded as Gaussian prior over model
parameters. `(D,Z,wt,Ft) denotes the loss function on the
t-th class with regard to discriminative function Ft(wt, zi) =
wT

t zi, where zi denotes the feature representation of sample
xi. The function can be defined with hinge loss:

`hinge =

N∑
i=1

max
(
0, 1− Ct(yi)Ft(wt, zi)

)
, (3)
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or probabilistic log-loss:

`prob =

N∑
i=1

log
(
1 + e−Ct(yi)Ft(wt,zi)

)
, (4)

where Ct(yi) = 1 if yi = t and −1 otherwise.

3.2. Hierarchical Model with Multi-level Representations

Given the hierarchical structure, the categories are grouped
to G hyper-classes. For example, horse and dog belong to
the group which represents animal, whereas car, motorbike
and tricycle belong to the hyper-class of vehicle. In our shar-
ing model, each node in the hierarchy is associated with a
separate parameter vector. The parameter vectors in differ-
ent layers are associated with the representations of differ-
ent levels. For example, given the parameters of class horse,
w+

1 = {w0, w1
1, w

2
1}, for each example xi, the discriminative

function in Eq. 2 can be rewritten by using multi-level repre-
sentation z+i = {z0i , z1i , z2i }:

F1(w
+
1 , z

+
i ) = w0T z0i + w1

1
T
z1i + w2

1
T
z2i , (5)

where w0, w1
1 , w2

1 represent the global, group, and specific
parameter vectors for the class respectively. When the multi-
level representation z+i is replaced by identical feature zi, the
Eq. 5 reduces to F1(w

+
1 , zi) = (w0 +w1

1 +w2
1)

T zi, which is
similar to the formulation in [7]. Compared with the sharing
model in [7], our method combines more statistical informa-
tion with the aid of multi-level representations.

Drawing on connection to the standard classification
model, the learning problem can be formulated as following:

min
W+

T∑
t=1

`(D,Z+, w+
t ,Ft) +

λ0
2
‖w0‖2

+
λ1
2

G∑
g=1

‖w1
g‖2 +

λ2
2

T∑
t=1

‖w2
t ‖2,

(6)

where W+ = {W 0,W 1,W 2}, W 0 only contains w0 as one
column. W 1 is comprised of w1

g as column vectors, and W 2

denotes the matrix composed of w2
t . The loss function `(∗)

can be defined by Eq. 3 or Eq. 4.
Given the tree structure, the model parameters can be op-

timized efficiently using an iterative procedure [7], as shown
in Algorithm 1. The target function in Eq. 6 can be decom-
posed into several sub-problems. For example, when W 0 and
W 2 are given,W 1 can be optimized efficiently as a traditional
classification model.

4. EXPERIMENTAL RESULTS

In this section, we evaluate our method on two datasets:
Caltech-256 [20] and ImageNet subset [21]. Our goal is to

Algorithm 1: Model Parameter Optimization
Input : Tr: the tree structure, G: the number of

groups, T : the number of categories
Output: W 0, W 1, W 2

1 Initialize: W 0 = O, W 1 = O, W 2 = O
2 while not converged do
3 Given W 1 and W 2, optimize global parameters

W 0 using Eq. 6.
4 for g = 1 to G do
5 Given W 0 and W 2, optimize group parameters

w1
g using Eq. 6.

6 end
7 for t = 1 to T do
8 Given W 0 and W 1, optimize specific

parameters w2
t using Eq. 6.

9 end
10 end

1) verify that our method is more accurate than the separate
classification models; 2) show the advantage of learning the
sharing model with multi-level feature representations.

Our method is mainly comprised of two aspects : hier-
archical sharing model and multi-level feature learning. In
order to evaluate the performance of our method, we compare
it with the following methods:

1. Flat Model + ScSPM [16] (F-ScSPM). Ignore hierar-
chical structure and the model learning is based on flat struc-
ture. The classes are trained separately with one-versus-all
strategy, as described in Section 3.1. The feature is computed
by sparse coding.

2. Sharing Model + ScSPM (S-ScSPM). The model is
learned based on hierarchical structure [7] with ScSPM.

3. Flat Model + Multi-Level Feature Representations (F-
MLF). The model is based on flat structure. The multi-level
feature representations are learned as described in Section 2.

Each image has be converted to gray-scale and resized to
150×150, using zero padding to preserve the aspect ratio. For
parameter details, dense SIFT [22] is used for coding in Sc-
SPM, and dictionary size is 1024. For model learning, hinge
loss is applied, as shown in Eq. 3. The regularization param-
eters λ in Eq. 6 are set to one. Multi-level feature learning
is followed the configuration in [9]. The hierarchical mod-
els are evaluated on a pre-computed tree structure of 3 layers.
The structure is constructed followed the strategy in [23].

4.1. Caltech-256

Caltech-256 [20] is a standard multi-class object recognition
dataset, which is comprised of 256 categories. For each class,
we randomly sampled 60 images, and split them into one
half (30) as training data and the other half (30) for testing.
Table 1 shows the accuracy of different methods in Caltech-

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20145933



Fig. 2. The distribution of the samples for 200 concepts se-
lected from ImageNet.

Table 1. Accuracy of four methods in Caltech-256 and Ima-
geNet subset.

Algorithm F-ScSPM S-ScSPM F-MLF Ours

Caltech-256 29.7% 32.4% 32.8% 34.6%
ImageNet 18.6% 21.4% 20.7% 23.9%

256. Our method achieves better results compared with the
baseline methods. The result shows the advantage of incor-
porating category hierarchy with multi-level feature represen-
tations. Compared with the methods without multi-level fea-
ture learning (F-ScSPM, S-ScSPM), multi-level feature learn-
ing can capture rich visual information with multiple scales,
which is helpful to improve performance. On the other hand,
the performance difference between F-MLF and our method
shows the sharing model learning can effectively exploit and
transfer information with the aid of multi-level visual fea-
ture representations. This can be shown in Fig 1(b). Mid-
level features capture the patterns indicative of object parts,
the difference between the value of group parameters shows
the bias towards these features, that is to say, different visual
information can be shared between related classes. The fea-
tures with large weight reveal the common information in the
group, such as the pattern like wheel towards the group which
contains car, motorbike and tricycle.

4.2. ImageNet dataset

ImageNet [21] is a large scale dataset where the class con-
cepts are organized based on WordNet [24] structure. We
randomly select 200 categories which covers wide domains of
semantics, such as animal, plant, container, sport. The num-
ber of class samples is quite different, from several to thou-
sands, as shown in Fig. 2. We split the samples of each class
into two equal sets: one is for training and the other is for test-
ing. Table. 1 shows the results achieved by all the methods on
these categories. We can observe that the sharing models (S-
ScSPM, our method) show better performance compared with
the models based on flat structure. Moreover, the increment of
accuracy over F-ScSPM (shown in Fig. 3) demonstrates that
the model based on sharing paradigm has strong ability when
tackling the classes with imbalance distribution of samples.
Information sharing in the hierarchy can allow the categories

Fig. 3. Improvement of sharing models over F-ScSPM. Cate-
gories are sorted by the improvement on accuracy.

Fig. 4. Confusion matrix of our model on ImageNet subset.

with few samples to borrow statistical strength from related
categories. Moreover, as our method exploits rich visual in-
formation from multiple levels, it achieves better results com-
pared with S-ScSPM. Fig. 4 displays the confusion matrix of
our model on 200 classes. It displays block-structured, indi-
cating that the errors of our model mostly occur on the related
classes in a group rather than the arbitrary ones.

5. CONCLUSION

We have proposed to learn a hierarchical sharing model
by incorporating with multi-level feature representations.
Multi-level visual information is transferred across the re-
lated categories in the hierarchy. The experimental results
show the effectiveness of our approach. As the hierarchy in
our model is pre-computed by some other methods, it may be
not optimal for effective information transfer. One future di-
rection is to learn the hierarchy and the model simultaneously.
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