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Abstract. This paper presents a novel Prototype Discriminative Learn-
ing (PDL) method to solve the problem of face image set classification.
We aim to simultaneously learn a set of prototypes for each image set and
a linear discriminative transformation to make projections on the target
subspace satisfy that each image set can be optimally classified to the
same class with its nearest neighbor prototype. For an image set, its pro-
totypes are actually “virtual” as they do not certainly appear in the set
but are only assumed to belong to the corresponding affine hull, i.e., affine
combinations of samples in the set. Thus, the proposed method not only
inherits the merit of classical affine hull in revealing unseen appearance
variations implicitly in an image set, but more importantly overcomes
its flaw caused by too loose affine approximation via efficiently shrinking
each affine hull with a set of discriminative prototypes. The proposed
method is evaluated by face identification and verification tasks on three
challenging and large-scale databases, YouTube Celebrities, COX and
Point-and-Shoot Challenge, to demonstrate its superiority over the state-
of-the-art.

1 Introduction

As one of the most important problems in the field of computer vision, tradi-
tional face recognition is usually posed as a single image classification problem.
With development of imaging technology, multiple images can be available for
one person in many real-world application scenarios such as video surveillance,
multi-view camera photos or online photo albums, etc. Since multiple images
usually incorporate dramatically large variations in pose, illumination, expres-
sion and other factors, it is no longer sufficient for traditional face recognition
to handle such scenarios, which leads to a new research focus on face image set
classification. Compared with a single image, a set of images can provide more
information to describe the subjects of interest, hence image set classification
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Fig. 1. Conceptual illustration. Different colors denote different subjects. R and R”
are respectively the original sample space and the projected subspace. (a) shows the
affine hulls Hq1, H2 and Hj3 of three image sets where Hy; and H» are overlapped which
leads to a failed match. (b) illustrates the training process by taking any sample = in
image set 1 as an example. The arrows imply the training objective, which is to make
the projections in R” satisfy that for a projection y = W'z, its nearest neighbor in a
prototype set from its own class (i.e., nn(y)) is closer than any other from different
classes (i.e., nny(y)). (c) is an illustration of the learned target subspace and prototype
sets.

is expected to achieve more appealing performance than single image classifica-
tion. Generally speaking, existing image set classification methods mainly focus
on how to model the image set and how to measure the dissimilarity between
two sets.

In recent years, a simple but efficient affine hull model [1] is proposed to
model the image set. The affine hull model tends to complement the unseen
appearance variations that even do not appear in the image set via covering the
affine combinations of sample images in this set. Thus the affine hull is quite
appealing due to its favorable property of characterizing the implicit semantic
relationship between the sample images in the set. Nevertheless, there are some
fatal limitations. On the one hand, the affine hull matching fails when two hulls
overlapped. This is usually caused by the over-large affine hull which usually
occurs if the image set contains outliers such as incorrect or low-quality images.
An illustration of such case is shown in Fig. 1(a). For shrinking the affine approx-
imation, later methods attempt to artificially impose a tighter constraint (such
as convex [1], sparse [2], regularized [3] or probabilistic [4] constraint) which,
however, is a brute-force way and may lead to high time cost or missing of some
representative candidate points. On the other hand, the discriminative informa-
tion is ignored, while the affine hulls modeled based on original feature may not
suffice to be discriminated linearly, which is iteratively learned in the form of
discriminative metric in [5,6].
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To address these limitations and explore a totally different and novel solu-
tion, this paper presents a Prototype Discriminative Learning (PDL) method
for face image set classification. Our goal is to simultaneously learn a set of
representative points (i.e. prototypes) for each image set and a linear discrimi-
native projection. Thereinto, the learned prototypes of an image set are actually
“virtual”, that is, they do not certainly appear in the set but are assumed to
belong to the corresponding affine hull, which aims to inherit the merit of affine
hull in revealing unseen appearance variations. We expect that in the target pro-
jected subspace each image set can be optimally classified to the same class with
its nearest neighbor prototype set. Figure 1(b) is an illustration of the training
objective, while Fig. 1(c) shows the finally learned target subspace and prototype
sets. Thus for an image set, its prototype set can be considered to shrink the
corresponding affine hull discriminatively. Specifically, we estimate the loss func-
tion for classifying any image in an image set into the same class with its nearest
prototype in the projected target subspace. Then by minimizing such loss, we
can optimize the prototype sets and the linear projection simultaneously through
gradient decent.

The rest of the paper is organized as follows: In Sect.2, we review some
existing works for face image set classification. Section 3 describes the proposed
Prototype Discriminative Learning (PDL) method and then gives a discussion
about some related works in the literature. In Sect. 4, we demonstrate the exper-
imental evaluation on three challenging databases and analyze the comparison
results with other works. Finally, Sect. 5 summarises the conclusion.

2 Related Work

In this section, we briefly introduce the existing works for face image set clas-
sification. To represent semantic relationship implicit in the image set, a lot
of methods are proposed by exploring different kinds of image set models, for
instance, one or several linear subspaces, statistical information, reconstruction
model and affine hull.

In the literature, some methods tend to represent an image set as one or sev-
eral linear subspaces. For example, Mutual Subspace Method (MSM) [7] and
Discriminant analysis of Canonical Correlations (DCC) [8] model the image
set with a single linear subspace and the difference between two subspaces is
measured by principal angles. Grassmann Discriminant Analysis (GDA) [9] and
Grassmann Embedding Discriminant Analysis (GEDA) [10] model the image set
similarly but perform kernel discriminative learning on the Grassmann manifold
where each point is a linear subspace. Besides, a series of works after Manifold-
Manifold Distance (MMD) [11] propose to characterize an image set by multi-
ple linear subspaces. Among them, MMD computes the distance between image
sets by using the nearest distance between pair-wise local linear models and then
Manifold Discriminant Analysis (MDA) [12] extends MMD by learning a discrim-
inative feature subspace. Then an image set alignment method [13] is proposed
to match the local linear subspaces more precisely. A later work of [14] proposes
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to search joint Sparse Approximated Nearest Subspaces (SANS) and employ
their distance to measure the image set dissimilarity. A Robust Structured Sub-
space Learning (RSSL) method [15] is proposed for data representation, which
respects the locally smooth property of visual geometric structure.

Some methods propose to extract the statistical information, such as mean
vector, covariance matrix, probability distribution, or a combination of them, to
describe the data structure in the image set. Some earlier methods, e.g., [16,17],
exploit some parametric distribution, such as Gaussian, to represent each image
set and compute the similarity by Kullback-Leibler Divergence (KLD). The
Covariance Discriminative Learning (CDL) method [18] exploits the covariance
matrix to represent the image set and conducts kernel discriminant analysis on
the Symmetric Positive Definite (SPD) manifold. Harandi et al. [19] present an
SPD Manifold Learning (SPDML) method to learn an orthonormal projection
from the high-dimensional SPD manifold to a low-dimensional, more discrim-
inative one. Then Huang et al. [20] propose to learn a tangent map from the
original tangent space to a new discriminative tangent space. A later work of
Wang et al. [21] proposes to model the image set with a GMM and derive a
series of kernels for Gaussians to conduct Discriminant Analysis on Riemannian
manifold of Gaussian distributions (DARG).

Different from the methods above, some methods attempt to employ a recon-
struction model to learn the image set representation implicitly and then com-
pute the dissimilarity between image set by corresponding reconstruction error.
For instance, face dictionary is extended from still images to videos and the
sparse representation of image set can be learned through a sparse reconstruc-
tion mechanism. Specifically, Chen et al. [22,23] present a video-based dictionary
method and build one dictionary for each video clip. Cui et al. [24] propose a
Joint Sparse Representation (JSR) method to adaptively learn the sparse rep-
resentation of an video clip with consideration of the class-level and atom-level
sparsity simultaneously. Further, a simultaneous feature and dictionary learning
(SFDL) method is proposed in [25] so that discriminative information can be
jointly exploited. Besides, Hayat et al. [26] present an Adaptive Deep Network
Template (ADNT) to learn a deep reconstruction network for each class.

In addition to the above three categories, some works present an affine hull
based model to reveal the unseen appearance within an image set and the implicit
semantic relationship from the view of general data geometric structure. For
example, Affine Hull based Image Set Distance (AHISD) [1] is proposed to model
each image set by an affine hull model and thereby defines the dissimilarity
between two hulls as the distance between a pair of nearest points belonging to
either hull respectively. Aiming at overcoming the disadvantage that the affine
hull may be too large and overlapped, a following trend of works attempt to add
some constraints to avoid too loose affine approximation. For example, Convex
Hull based Image Set Distance (CHISD) [1] adds a coefficient bound to control
the looseness of the convex approximation. Then Sparse Approximated Nearest
Points (SANP) [2] is proposed to introduce a sparse representation constraint to
the candidate points that the selected nearest points are required to be sparsely
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represented by the original samples. More recently, Yang et al. [3] propose to
approximate each image set by a regularized affine hull model, which exploits
a constraint to regularize the affine hull. Further the work of [27] proposes to
use multiple local convex hulls to approximate an image set. Chen et al. [2§]
propose to solve the matching problem by the minimal reconstruction error from
a Dual Linear Regression Classification (DLRC) model. Wang et al. [4] propose
to enhance the robustness against impure image sets by leveraging the statistical
distribution of the involved image sets. To exploit the discriminative information,
Zhu et al. [5] propose a Set-to-Set Distance Metric Learning (SSDML) method
to learn proper metric between hulls iteratively. Besides, Leng et al. [6] extend
SSDML with the strategy of prototype learning, which aims to iteratively filter
out the outliers contained in original image set during SSDML.

3 Proposed Method

In this section, we first overview our proposed Prototype Discriminative Learning
(PDL) method, followed by reviewing the affine hull model. Then we describe the
details of the proposed method. Finally, we give a theoretical discussion about
related methods.

3.1 Overview

This paper proposes a novel Prototype Discriminative Learning (PDL) method
for face image set classification. As discussed in Sect.1, it can promisingly
improve the robustness of affine hull model to simultaneously learn prototypes
and a linear discriminative projection, which are expected to satisfy the following
two constraints.

(1) For an image set, its prototypes are a set of points belonging to the corre-
sponding affine hull.

(2) Through the linear projection, the prototypes are mapped to a target sub-
space where for every sample image, its nearest neighbor in a prototype set
from its own class is closer than any other from different classes.

With the first constraint, for an image set, its prototype set can be formu-
lated as a set of combinations of the sample images in the set and to learn the
prototypes, we just need to learn the corresponding affine coefficients. Hence,
our proposed method inherits the favorable property of affine hull model that
the unseen appearances can be revealed and employed to present the implicit
semantic relationship by means of the general data geometric structure. The sec-
ond constraint aims to drive that in the target subspace different image sets can
be classified optimally to the same class with the nearest prototype set. We esti-
mate the loss function similarly with the NN error estimation in [29-31]. Then
by minimizing such loss function, we derive the corresponding gradients with
respect to prototypes and the linear projection respectively, thus the optimized
prototypes and linear discriminative projection can be learned simultaneously
through gradient decent.
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3.2 Affine Hull Model

Suppose there are a total of C image sets for training, the data matrix of the c-th
image set is denoted by X, = {z¢1,%c,2, --s Ten, §, Where . ; is a d-dimensional
feature vector of the i-th image. The c-th image set can be approximated as the
affine hull of the sample images [1].

Hc{ziacyrzm iacyil},cl,...,a (1)
i=1 i=1

By using the sample mean pu, = ni Z?;l Z.; as a reference, we can rewrite
the affine hull model as follows. 4

H, = {z = p.+Unclv. € R}, c=1,...,C, (2)

where U, is an orthonormal basis and obtained by applying the Singular Value
Decomposition (SVD) to the centered data matrix [T 1 — fic, .., Te,n, — fe). Note
that the directions corresponding to near-zero singular values are discarded, lead-
ing to l. (I < N.) singular vectors in U.. As we have discussed in Sect. 1, the
affine hull is a general geometric model containing all the affine combinations of
sample images in the set, which can account for the unseen appearance, possible
data variation, and further the semantic relationship between sample images.
Nevertheless, such approximation is too loose and may lead to over-large affine
hull. Therefore, in the following section we will introduce the proposed PDL
method which simultaneously learns a prototype set to take place of the affine
hull for each image set and a linear projection to make the prototype sets dis-
criminative.

3.3 Prototype Discriminative Learning

Let P = {Py, Ps,..., Pc} be a collection of the prototype sets to learn. Among
them, for the c-th image set X., the prototype set can be denoted as P, =
{pc,lapc,27 -~-7pc7mc} g Ha where

DPe,i = He + Ucvc,i, Ve,i S Rl. (3)

Through a linear transformation W, we can obtain a projection in the target
subspace which is denoted as

y=WTz cR", (4)

for each image data x € X,,c=1,...,C.

Our goal is to drive that for any image in each image set, it is closer to
its nearest neighbor in any prototype set from the same class than that from
different classes after mapped to the r-dimensional target subspace. Therefore,
in reference of the NN error estimation in [29-31], we define a loss function as
follows.
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C
J(I/V,Pl,..,Pc):Z Z Step(Qx)a (5)

c=1zeX,

where step(Q..) is the step function, i.e.,

0, ; 1;
step(z) = { ) :; z i 1 (6)

and

0, = d(y, nng,(y)) )
xr i

d(y, nn(y))
where d(-, -) is the Euclidean distance. nng (y) and nng(y) are the nearest neigh-
bors of y respectively from the projections of the same-class and different-class
prototype sets, therefore we can formulate them as follows.

nnl(y) = Wha, a= ar%r\n}i)n d(y, WTa)
ac CH
a€Class(x)

nng(y) = wTy, b= ?é%l\n;n d(y, WTb)
biC’lassE;n)

(8)

Equation (5) denotes the total loss of classifying all sample data z € VX,
c=1,...,C. Specifically, after mapped though W, when sample data x is nearer
to a prototype of its own class than any other from a different class, the loss for
classifying z is zero. On the contrary, if in the projected subspace, x is nearer
to a prototype from some different class than any other from its own class, the
classification of x is mistaken and a large loss of 1 is imposed. Note that here
the nearest neighbor of x € X, is searched in prototype sets except for the one
corresponding to X,.

Considering the differential property, we employ a sigmoid function with
slope to approximate the step function, i.e.,

1
Sp(z) = 1+ ef=2)"

9)

Note that when £ is large, Sg(-) is a smooth approximation of the step function.
Then the objective function can be rewritten as follows.

C

J(W,Pi, o Po) =y > S5(Qu). (10)

c=1lzeX,

3.4 Optimization

For learning optimal prototype sets P = { Py, P, ..., Po} and linear transforma-
tion W, we need to solve the optimization problem in the following.

{W* P/, Py,....,P5} = argmin  J(W,Py,.., Po). (11)
W,Py,Ps,...,Pc
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In this paper, a gradient descent method is employed to solve such problem. Then
we tend to derive the gradient of loss function J with respect to W, Py, Ps, ..., Po.
Since the procedure to search the nearest prototype depends on the prototype
sets and transformation matrix but is non-continuous and problematic, a simple
approximation is usually exploited with such dependence ignored. That is to say,
the same prototype neighbor is searched when the variation in the prototype sets
and transformation matrix is sufficiently small [29]. Under such assumption, we
can derive the gradient of J with respect to W approximately as follows:

K G (o = )~ i )

c=1lzeX,. nng ))

(12)
< 84(Qx)Q
22 & L Q (@ = b) (g — mn(y)n),

nn
c=1zeX, y’ )

where W, € R? denote the k-th column of W and yr denote the k-th element of
vector y. Note that denotations a and b have been defined in Eq. (8).

According to Eq. (3), for learning the prototype sets, we just need to learn the
corresponding {v.;}, i = 1,...,m¢ and ¢ = 1,...,C. Thus we derive the gradient
of J with respect to each vector v.; as follows.

S5(Q2)Qu
a%, E:}:d b UTWWT (0 — )

= 5 Plynng(y))
Pci=a
¢ SB be Qm T T (13)
-3 UTWWT (b - ),
d?(y, nng(y))
c=1lzeX,.
pm*b

For space limitation, the detailed derivations of Eqgs. (12) and (13) are given in
a supplementary material.

Based on the derived gradients above, we can update the prototype sets
and the linear projection in an iterative procedure by using the limited-memory

BFGS (L-BFGS) method [32].

3.5 Classification

After the training process, we have computed a optimal linear transformation
W and prototype sets Py, Ps, ..., Po for the total of C' training image sets. Then
given a total of K image sets as the gallery, we need to give a prediction of the
label for a new test image set. First we optimize the prototype set for each gallery
image set with W fixed by solving Eq. (11). Then we compute the projection of
these gallery prototype sets and the test image set through W. Finally, the
distance between the test image set and a gallery image set can be computed
as the minimal distance between samples in the test image set and prototypes
corresponding to the gallery image set. Thus, the test image set can be classified
into the same class with its nearest gallery prototype set in the target subspace.
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Algorithm 1. PDL-training

Input:
Data matrices of C' image sets for training: {X1, X, ..., Xc} and their labels;
the slope for sigmoid function: 3;
the initial prototype sets: P = {Pi, ..., Pc};
the initial transformation matrix: W.

Output:
The optimal P and W

1: Initialize the value of J as zero;

2: while not converged do

3: forc=1to C do

4: for all x such that z € X. do

5: Compute the projection y by Eq. (4);

6: Solve the optimization problem in Eq. (8) to compute nns,(y), nng(y);

T Compute Qs by Eq. (7);

8: Add 83(Qz) to the value of J;

9: Add to the gradient with respect to W and P respectively by Egs. (12) and
(13);

10: end for

11:  end for

12:  Compute the step length and seeking direction by the L-BFGS algorithm;
13:  Update P and W;

14: end while

15: return P* W*;

The Algorithms 1 and 2 summarize the training and testing process of our
proposed PDL method respectively.

3.6 Discussion About Related Works

Firstly, we analyze the differences between our proposed PDL method and the
unsupervised affine hull methods, such as AHISD [1], CHISD [1], SANP [2], RNP
[3], DLRC [28] and ProNN [4], etc. (1) For AHISD, the affine hull may suffer
from the issue of intersection, which makes the subsequent distance computa-
tion incorrect. Later CHISD, SANP, RNP and ProNN all attempt to solve such
issue by imposing a constraint (such as convex, sparse, regularized, or prob-
abilistic constraint) to the geometry structure of affine hull or the selection
criteria of nearest points. These constraints are artificially set and based on
additional assumption, which may lead to high time cost or missing of some use-
ful information. On the contrary, our method efficiently ameliorates this issue
by learning more representative and discriminative prototypes from the affine
hull adaptively. (2) These methods are all unsupervised, while the discrimina-
tive information has been widely considered to be very important for the object
classification.

Secondly, we figure out the differences from the supervised affine hull methods
SSDML [5] and SPML [6]. (1) SSDML and SPML both follow a metric learning
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Algorithm 2. PDL-testing

Input:
Data matrices of K image sets as gallery and their labels {L1, ..., Lk };
Data matrix of an image set for test: T'= {t1,...,tn, }, t; € R
the slope for sigmoid function: (3;
the initial prototype sets for the gallery image sets: G = {G41, ..., Gk };
the initial transformation matrix: W.

Output:
The label of the test image set L~

1: Learn the prototype sets G* = {G7, ..., Gk} with W fixed similarly with Alg.1.

2: Compute the projection T by applying Eq. (4) to each sample vector in T

3: Compute the projection G* = {é\f, ,éTN} by applying Eq. (4) to each sample
vector in Gy, i =1, ..., K;

4: k* = argmin; , d(T', G )

5: return L™ = Ly~;

framework, while our PDL proposes a different strategy of learning a linear
discriminative projection. (2) They both exploit a global discriminative learning,
while we conduct PDL from a local view of nearest neighbor (NN), that is, only to
penalize a larger distance between nearest neighbors from different classes than
that from the same class. From the local view, the optimization objective is more
consistent with the final NN-based classification, thus can facilitate more precise
classification. (3) To solve the optimization problem, they both adopt a strategy
of alternately optimizing. On the contrary, PDL presents a joint optimization
mechanism, which can favorably reduce time complexity and avoid trapping in
local optimum to some extent. (4) SPML can be considered as iteratively filtering
out outlier samples (the remaining real samples are their so-called “prototypes”)
in the image set while learning discriminative metric. In contrast, our PDL aims
to learn discriminative virtual prototypes, which do not necessarily appear in
the original set as in SPML but are just required to belong to the corresponding
affine hull. Based on this different problem formulation, the learning strategy in
PDL is believed to be more direct and efficient.

Thirdly, we give a discussion about comparison with the prototype selection
methods based on single sample/image [33,34]. These methods usually propose
to select prototypes from the existing samples as a reference for nearest neighbor
classifier, which is confined only to the existing samples. However, we argue that
for the image set classification problem, the appearance variations within an
image set may be too large to be matched only based on existing samples. On the
contrary, our PDL first employs the affine hull to complement the unseen data
variations and subsequently learns prototypes from these affine combinations,
which is more specifically suited to the classification of image sets containing
complex data variations.
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4 Experiments

4.1 Databases and Settings

For evaluating our proposed PDL method, we used three challenging and large-
scale databases: YouTube Celebrities (YTC) [35], COX [36] and Point-and-Shoot
Challenge (PaSC) [37]. Examples in the three databases are shown in Fig. 2.

The YTC database is collected from YouTube and consists of 1,910 highly
compressed and low-resolution video sequences belonging to 47 subjects. The
face region in each image was resized into 20 x 20 intensity image, and was
processed with histogram equalization to eliminate lighting effects. Following the
similar protocols of [18,25], we conducted ten-fold cross validation experiments
and randomly selected three clips for training and six for testing in each of the
ten folds. This enables the whole testing sets to cover all of the 1,910 clips in
the database.

The COX database is a large-scale video database and contains 3,000 video
sequences from 1,000 different subjects which are captured by different cam-
corders. In each video, there is around 25-75 frames of low resolution and low
quality, with blur, and captured under poor lighting. The face in each image was
resized into 32 x 40 intensity image and histogram equalized. Since the database
contains three settings of videos captured by different cameras, we conducted
ten-fold cross validation respectively with one setting of video clips as gallery
and another one as probe.

The PaSC database consists of 2,802 videos of 265 people carrying out simple
actions. Half of these videos are captured by a controlled video camera, the rest
are captured by one of five alternative hand held video cameras. It has a total
of 280 sets for training and 1401 sets for testing. Verification experiments were
conducted using control or handheld videos as target and query respectively.
Since the database is relatively difficult, we followed a work of [38] to extract
the state-of-the-art Deep Convolutional Neural Network (DCNN) features rather

Fig. 2. Some examples of the databases. (a) YTC (b) COX (c) PaSC
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than original gray features. Here the DCNN model is pre-trained on the CFW
database [39] and subsequently fine-tuned on the training data of PaSC and
COX database by using the Caffe [40].

4.2 Comparative Methods

To study the effectiveness of our proposed PDL method, we compared with sev-
eral state-of-the-art image set classification methods. Among them, there are
several affine hull based methods, including Mutual Subspace Method (MSM)
[7], Affine Hull based Image Set Distance (AHISD) [1], Convex Hull based Image
Set Distance (CHISD) [1], Sparse Approximated Nearest Point (SANP) [2], Reg-
ularized Nearest Points (RNP)[3], Dual Linear Regression Classification (DLRC)
[28] and Set-to-Set Distance Metric Learning (SSDML) [5]. In addition, we also
gave the comparison results with some other state-of-the-art supervised methods,
such as Discriminative Canonical Correlations (DCC) [8], Manifold Discrimi-
nant Analysis (MDA) [12], Grassmann Discriminant Analysis (GDA) [9] and
Grassmannian Graph Embedding Discriminant Analysis (GEDA) [10].

The source code of all comparative methods released by the original authors
were used except that of DLRC. We carefully implemented the DLRC algorithm
since downloading of its code is not available on its website now. For fair compar-
ison, the important parameters of all the methods were carefully tuned following
the recommendations in the original works: For AHISD, we retained 95% energy
when learning the orthonormal basis. For CHISD, the error penalty was set to be
C' =100 as in [1]. For SANP, the parameters were the same as [2]. Considering
the high time cost in SANP, we only compared with it on YT'C and COX. Note
that since the SANP method is too time-consuming to run under the setting of
COX, which contains large-scale data, we alternately took the image sets of 100
persons rather than all the 700 persons for testing. For RNP and DLRC, all the
parameters were configured according to [3,28] respectively. For SSDML, we set
A1 = 0.001, Ay = 0.5, the numbers of the positive pairs and the negative pairs
per set are set to 10 and 20. For DCC, corresponding 10 maximum canonical cor-
relations were used. For MDA, the parameters were configured according to [12].
For GDA/GEDA, the dimension of Grassmannian manifold was set to 10. For
our proposed PDL, we used the PCA transformation matrix as an initialization
of W and employed unit vectors to initialize the coefficients in P.!

4.3 Results and Analysis

The identification experiments were conducted on the YTC and the COX data-
base. Table 1 tabulates the rank-1 identification rates on the YTC and the COX
databases, where each reported rate is a mean accuracy over the ten-fold trials.
Then we used the PaSC database to evaluate our performance on the verification
task and Table2 lists the verification rate at a false accept rate (FAR) of 0.01.

! The source code of PDL is available at http://vipl.ict.ac.cn/resources/codes.
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Table 1. Identification rates on YTC and COX. Here, “COX-ij” represents the exper-
iment using the i-th set of videos as gallery and the j-th set of videos as probe.

Method YTC | COX-12 | COX-13  COX-23 | COX-21 | COX-31 | COX-32
DCC [§] 0.668 |0.625 0.661 0.506 0.561 0.638 0.452
MDA [12] |0.670 | 0.658 0.630 0.362 0.554 0.432 0.297
GDA [9] 0.659 |0.723 0.807 0.744 0.714 0.820 0.776
GEDA [10] | 0.668 |0.767 0.838 0.766 0.726 0.828 0.800
AHISD [1] |0.637 |0.530 0.361 0.175 0.435 0.350 0.188
CHISD [1] |0.665 |0.569 0.301 0.148 0.444 0.264 0.137
SANP [2] |0.684 |0.541 0.360 0.156 0.396 0.271 0.148
RNP [3] 0.703 |0.525 0.333 0.148 0.581 0.379 0.146
DLRC [28] | 0.692 | 0.492 0.379 0.155 0.441 0.361 0.175
SSDML [5] | 0.689 |0.601 0.531 0.287 0.479 0.444 0.273
PDL 0.7430.796 | 0.869 |0.822 |0.760 |0.871 |0.824

Table 2. Verification rates on PaSC when false accept rate is 0.01 on PaSC dataset.
Note that the control/handheld indicates the experiments with control/handheld
videos.

Method Control | Handheld
DCC [§] 0.389 | 0.375
GDA [9] |0.397 | 0.375
GEDA [10] | 0.406 | 0.390
AHISD [1] 0219 0.143
CHISD [1] |0.261 | 0.210
RNP [3] 0.274 |0.198
DLRC [28] 1 0.242 | 0.171
SSDML [5] | 0.292 | 0.229
PDL 0.415 |0.396

As can be seen in the results, our method performs the best on all of the
three databases. Firstly, our PDL achieves an impressively better result than the
unsupervised affine hull based methods, such as AHISD, CHISD, SANP, RNP
and DLRC. Specifically, on YTC, our method performs higher than a baseline
method AHISD by 11%. On PaSC, our PDL outperforms AHISD by 19.6% for
the control videos and 25.3% in the handheld scenario respectively. This supports
the discussions in Sect.3.6 that our PDL improves the affine hull model by
learning prototypes discriminatively and adaptively, which is more flexible and
robust than artificially imposing a tighter constraint. Secondly, our PDL is also
superior over the supervised affine hull based method SSDML. As discussed in
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Sect. 3.6, it mainly attributes to our innovation in learning virtual prototypes,
the local discriminative learning strategy and the joint optimization mechanism.
Besides, it can be generally observed that the supervised methods outperform the
unsupervised methods more obviously on COX than the other two databases,
due to the particularly large within-class variations on COX and the similar
motions between different faces captured by the same camera.

4.4 Time Comparison

In addition, we compared the computational complexity of different methods on
an Intel i7-3770, 3.40 GHz PC. Table 3 lists the time cost for the comparative
methods for training and testing respectively on the YTC database. Note that
only supervised methods need the training time. In practice, test time is more
important for the efficiency of a method, as the training process can be conducted
offline. From the table, we can see that our proposed method is very efficient
and is faster than other affine hull based methods. Since For testing, our method
only need to compute the projections and their distance, it is relatively efficient
and is faster than other affine hull based methods.

Table 3. Time comparison (seconds) of different methods on YTC for training and
testing.

Method | MSM | AHISD | CHISD | SANP | RNP | DLRC | SSDML | PDL
Training N/JA N/A |N/A |N/A |N/A N/A |346.33 75.30
Testing |1.31 | 1.58 |1.71 5677 |1.56 |1.91 |2.35 | 1.15

5 Conclusions

This paper has proposed a novel Prototype Discriminative Learning method for
face image set classification. We represented an image set by a prototype set
learned from its basic affine hull model to shrink the loose affine hull effectively
while inheriting the merit of affine hull in complementing the unseen appear-
ance with affine combinations. Meanwhile, a linear projection was learned to
drive that in the target projected subspace, the learned prototypes can be used
to discriminate image sets of different classes. Our experimental evaluation has
demonstrated that the proposed method can lead to state-of-the-art recogni-
tion accuracies on several challenging databases for face image set identifica-
tion/verification.

In the future, we will study the regularization of W as well as prototypes more
comprehensively. Further, we will explore the effect of learning representative
prototypes in the large-scale and unclean image sets and study to construct
dense and effective prototypes which can be easily adapted to other typical well
established image set models, such as, linear subspace based set models, manifold
based set models or statistical set models.
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