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Abstract. In this paper, we study the task of video face recognition.
The face images in the video typically cover large variations in expres-
sion, lighting, or pose, and also suffer from video-type noises such as
motion blur, out-of-focus blur and low resolution. To tackle these two
types of challenges, we propose an extensive framework which contains
three aspects: neural network design, training data augmentation, and
loss function. First, we devise an expressive COmpact Second-Order net-
work (COSONet) to extract features from faces with large variations. The
network manages to encode the correlation (e.g. sample covariance ma-
trix) of local features in a spatial invariant way, which is useful to model
the global texture and appearance of face images. To further handle the
curse of high-dimensional problem in the sample covariance matrix, we
apply a layer named 2D fully connected (2D-FC) layer with few parame-
ters to reduce the dimension. Second, due to no video-type noises in still
face datasets and small inter-frame variation in video face datasets, we
augment a large dataset with both large face variations and video-type
noises from existing still face dataset. Finally, to get a discriminative
face descriptor while balancing the effect of images with various qual-
ity, a mixture loss function which encourages the discriminability and
simultaneously regularizes the feature is elaborately designed. Detailed
experiments show that the proposed framework can achieve very com-
petitive accuracy over state-of-the-art approaches on IJB-A and PaSC
datasets.

Keywords: Video Face Recognition, Second-Order Network, Data Aug-
mentation

1 Introduction

As tremendous video data are being created from real-word application scenarios
such as video surveillance, movies, or daily photo albums, video face recognition
(VFR) has caught much more attention nowadays.

To solve this task, many approaches have been proposed [37, 16, 39, 15, 5, 31,
8, 36, 6, 9, 32]. As shown in the left of Fig. 1, a VFR model generally consists of
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two important parts: an image-level feature extractor to get the face descrip-
tor (e.g. deep or hand-crafted feature) of each face image and a video modeling
module to aggregate face descriptors within a video into a compact video rep-
resentation. Lots of prior work focus on the latter [37, 16, 39, 15, 5, 31, 8, 36, 6],
whereas, few efforts are made in the former, except [9, 32]. In this paper, we fo-
cus on the former (image-level feature extractor) based on convolutional neural
networks (CNNs). Since subjects in videos are often in movement, video faces
suffer from large variations (e.g. expression, lighting or pose variations), and
they also have video-type noises such as motion blur, out-of-focus blur and low
resolution. Therefore, to devise an image-level feature extractor, two intuitions
should be kept in mind: (1) the network should be qualified for handling large
variations, and (2) the extracted face descriptor should be robust against both
video-type noises and large face variations.
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Fig. 1. Left is the general VFR model composed of two parts: image-level feature
extractor and video modeling module. Right is the pipeline of training COSONet.
Each training image in a batch is either picked from still faces or video-like augmented
ones. The COSONet is trained with two losses: softmax loss and ring loss.

To address the problem of large face variations, CNNs used for image-level
feature extractors have been developed into deeper or wider. CASIANet [40](10
layers), VGGFace [27](16 layers), ResNet [35](64 layers), and GoogleNet [39](wider)
are typical network structures among them. These networks are all based on first-
order feature statistics while rarely consider second-order or higher-order feature
statistics. Recently, networks based on second-order feature have gained impres-
sive performance in numerous vision tasks [23, 22, 21, 20, 18]. The second-order
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feature (e.g. sample covariance matrix) encodes the correlation of local features
in a translationally invariant way, which is useful to model the texture and ap-
pearance of images or regions [34]. In light of the strong modeling capacity and
promising performance of the second-order based networks, we aim to obtain a
superior network to extract image-level face descriptor based on this technique.
After local feature extraction, we perform second-order pooling to compute the
sample covariance matrix as the second-order feature.

The sample covariance matrix is a structured representation which has two
distinctive attributes: (1) it is a Symmetric Positive Definite (SPD) matrix lying
on a specific Riemannian manifold, and (2) it is a high-dimensional matrix (size
of d×d if local features are d-dimension). For the first aspect, it is shown that nor-
malizing the sample covariance matrix is essential to achieve better performance
[18, 22, 20]. We resort to a stable and fast matrix operation: approximate matrix
square root [20] to normalize it. Due to the second attribute, it’s necessary to
get a compact representation. A straightforward scheme is to flatten the sam-
ple covariance matrix into a 1D vector and transform it into lower-dimensional
vector by an FC layer. However, there will be plenty of parameters. Instead, we
extend the traditional FC layer applied for 1D vectors into 2D matrices, similar-
ly in 2D-PCA [38] and [14, 10], then propose a layer dubbed 2D fully connected
(2D-FC) layer with few parameters to obtain a lower-dimensional matrix as the
final second-order feature.

Fig. 2 describes the overall network structure, which is composed of four
blocks: convolution layers for local feature extraction, second-order pooling for
sample covariance matrix estimation, approximate matrix square root for nor-
malization and 2D-FC for a compact representation. We name the network as
COmpact Second-Order network (COSONet).
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Fig. 2. The network structure of COSONet.

For training the COSONet robust against large face variations and video-
type noises, face images in training dataset should possess these two types of
characteristics. Large still face datasets have large facial variations, but lack of
video-type noises. Though large video face datasets have some video-type noises,
their face images are redundant and their actual scales are smaller than those
still face datasets. Considering the drawbacks of these two types of datasets,
we augment video-like faces from large still face dataset by degenerating still
faces with video-type noises. Such augmented dataset will be characterized with
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both large face variations and video-type noises. On the other hand, the dataset
will cover face images with varying quality. However, it is found that the L2-
norm of low-quality face images’ features tends to be smaller than that of high-
quality face images’, when the widely used softmax loss is the training loss
function [29]. As a result, the network is likely to be biased to high-quality images
and fails to deal with low-quality ones. To handle such problem, we design our
final loss with two terms, where one is the typical softmax loss for encouraging
discriminative face descriptors, and the other is the newly developed ring loss
[42] for regularizing all face descriptors with equal L2-norm regardless of image
qualities.

Right part of Fig. 1 shows our training pipeline. In summary, this paper
contributes to the following two aspects:

– For the neural network, we propose COSONet to get a compact second-order
image-level face descriptor, which performs better than first-order networks.

– For a well-trained COSONet, we augment video-like face images from large
still face datasets and a mixtured loss is used to train the network.

2 Related Work

Our method mainly covers two aspects: video face recognition and second-order
networks. We will briefly review the works related to these two aspects.
Video Face Recognition. Existing video face recognition methods can be
roughly divided into two classes. One type of them tries to model facial vari-
ations in a video. The other type of them attempts to tackle the low-quality
problem in video frames. Approaches of the first type treat frames in a video
as an orderless image set and represent the set structure by a variational model
which includes affine/convex hull [5], linear subspace [33, 13, 15], statistical mod-
els [37, 25, 16] and non-linear manifold [6, 36]. Then, based on the properties of
the variational model, a specific metric is induced to compare the similarity of
different image sets. This type of methods may be limited in practical usage,
because there should be enough frames and facial variations in a video. As most
video frames are in low quality due to existing video-type noises, methods of the
second type focus on addressing these noises. For instance, [30] generated more
discriminative images from multiple degenerating video frames. [39, 24] adopted
attention-based pooling to filter out low-quality frames. They first estimated the
quality of each frame as its weight and then weakened the effect of low-quality
frames by weighted average pooling. In case that all frames in a video are of poor
quality, quality scores will be all equally low. As a result, the attention-based
pooling will degenerate into average pooling. However, the low-quality problem
is not yet solved. Instead, [32, 9] extracted discriminative feature from video
frames regardless of their qualities.

These two types of methods all need an image-level feature extractor to get
the feature of each frame. In this work, we propose an elaborate network based
on second-order networks to fulfill this.
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Second-order Networks. Second-order networks recently have gained more
and more attention. These networks mainly perform second-order pooling after
convolution layers. For example, a pioneer work [23] proposed bilinear pooling to
model pairwise feature interaction for fine-grained classification and found nor-
malization was essential to improve the performance. Then several normalization
methods were proposed. One such method is the matrix-logarithm operation. It
maps the second-order representation (e.g. the sample covariance matrices) from
Symmetric Positive Definite (SPD) matrices manifold to Euclidean space [18].
Later, both [22] and [21] found that matrix power normalization especially ma-
trix square root was more stable and robust than matrix-logarithm. [20] and
[22] further accelerated matrix square root by approximate solution. Since the
second-order features are high dimensional, [11] adopted two low-dimensional
kernel approximation methods to mitigate this problem.

3 Approach

In this section, we first introduce our COSONet structure. Then we describe the
details of data augmentation and loss functions.

3.1 COSONet structure

The overview of our COSONet is depicted in Fig. 2. For a face image, after
convolution layers for local feature extraction, we perform second-order pooling
to compute the sample covariance matrix of local features, then the sample
covariance matrix is normalized by approximate matrix square root. 2D-FC is
further applied to get a compact second order representation. Finally, the 2D
matrix is flattened into a vector as the face descriptor. Next, we will introduce
each block in details.

Second-order pooling. Networks that encode second-order statistics infor-
mation for local features have shown promising results on various vision tasks
including fine-grained classification [23, 22], large-scale visual recognition [21, 20],
semantic segmentation [18] and face recognition [7]. We exploit it as our image-
level feature extractor. Given a face image, let the output of the last convolution
layer to be a h×w× d tensor with spatial height h, spatial width w, channel d.
We reshape it into a matrix X with size of n× d, where n = h×w, each row of
X is a d-dimension local feature xi. We then perform second-order pooling by
estimating the sample covariance matrix as

C =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)> (1)

where xi represents the local feature across location i = 1, 2, . . . n. x̄ repre-
sents the mean of local features, which is given by x̄ = 1

n

∑n
i=1 xi. The diagonal

elements of C represent the variance of each feature channel, the off-diagonal
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elements represent the correlation between different feature channels. The vari-
ance or correlation statistics information is useful to model global texture and
appearance of a face image.

Approximate matrix square root normalization. The sample covariance
matrix C is an SPD matrix lying on a specific Riemannian manifold, directly
operating on it is non-trivial. Moreover, to achieve a good performance, it’s nec-
essary to normalize it [22, 21, 18]. Currently, there are two normalization strate-
gies: 1) Matrix-logarithm is applied to map the SPD matrices from Riemannian
manifold to Euclidean space, specifically, through log(C) = Ulog(S)U> with
C = USU> (the SVD for C). 2) Matrix power normalization, especially matrix

square root, concretely, through C
1
2 = US

1
2 U>. As stated in [21], a more ro-

bust sample covariance matrix could be estimated by matrix square root and
this normalization was shown to have better performance than matrix logarith-
m in [22, 21]. Thus it’s better to choose matrix square root for normalization.
However, matrix square root requires SVD which is numerical unstable during
gradient back propagation, and is also time-consuming as it is usually difficult
to be accelerated by GPUs.

Instead of accurately calculating matrix square root, we try to find the solu-
tion of equation F (Σ) = Σ2 −C = 0, as advocated in [20]. This equation can
be solved by Newton-Schulz iteration efficiently. Specifically, given initial states:
Y0 = C and Z0 = I, where I is the identity matrix, the iterative update rule is:

Yk =
1

2
Yk−1(3I− Zk−1Yk−1),Zk =

1

2
(3I− Zk−1Yk−1)Zk−1 (2)

SVD isn’t required, instead, only matrix product is involved which is stable and
fast on GPUs. Since the matrices Yk can converge to C

1
2 quadratically only if C

is in the region of ||C− I|| < 1, to transform any C into the convergence region,
we should first pre-normalize it. Thus, the final approximate matrix square root
normalization has three steps:

1. Pre-normalization by the trace as:

Ĉ =
1

tr(C)
C (3)

2. Newton-Schulz iteration with N times (a hyper-parameter) through Eq. 2,
where the initial states accordingly are Y0 = Ĉ and Z0 = I.

3. Post-normalization to recover the magnitudes and get the matrix square root
of C as:

Σ =
√
tr(C)YN (4)

2D fully connected layer After normalization, the second-order representa-
tion Σ is a matrix with size of d × d. If it is flattened into a vector as the face
descriptor and directly sent into the last FC layer of softmax loss function while
training, there will be d × d × k parameters, where k is the number of classes
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in the training set. However in large scale face datasets, k may be up to 10,000
(e.g. 10,575 subjects in WebFace [40]), if d is 256, there will be 655M parameters!
Besides, each face descriptor will be a d2-dimension vector which is too large to
store. Considering these problems, it is necessary to get a compact representa-
tion. A naive way is to first flatten Σ into a d2-dimension vector and transform
it into a lower-dimensional one by traditional FC layer. On the contrary, we
apply a more efficient way. We treat Σ as a matrix and extend traditional FC
layer applied for 1D vectors into 2D matrice, similarly in [14, 10]. Our specific
transformation is given by:

H = W>ΣW (5)

where W ∈ Rd×d̂ is a learnable parameter matrix and d̂ is much smaller than
d. We name this transformation as 2D fully connected layer (2D-FC) as in [10].

After 2D-FC, H is flattened into a vector (f = H(:)) to get a d̂2-dimension face
descriptor. It can be seen that the 2D-FC layer has much fewer parameters,
compared to the naive way (FC layer operated on the flattened Σ(:)). FC layer

would have d2 × d̂2 parameters to get the same dimensional face descriptor,
whereas, 2D-FC layer merely needs d× d̂ parameters.

3.2 Data augmentation

For COSONet automatically extracting robust feature against large face varia-
tions and video-type noises, the training datasets should have these two types
of data characteristics. Large still face datasets such as WebFace [40] and VG-
GFace2 [4] have large face variations but no video-type noises. Large video face
datasets such as UMDFaces-Video [1] have video-type noises, but face images
contain some redundancy because nearby faces are similar for some videos. The
actual scale of video face datasets is smaller than those still face datasets with
similar number of face images. Considering the shortcoming of these two kinds
of existing datasets, we propose to augment video-like faces from the given large
still face dataset for training. Such augmented dataset will be characterized with
both large face variations and video-type noises. Concretely, we apply three types
of augmentation strategies as similarly done in [9, 32]:

– Motion blur: we generate motion blur-like images with linear kernels whose
length and angle are randomly chosen from {11, 15, 19} and {0, 45, 90, 135}
respectively.

– Out-of-focus blur: we simulate out-of-focus blur by Gaussian kernels whose
size and width are randomly chosen from {9, 11, 15} and {1.5, 3.0, 4.5}.

– Low resolution: we resize images with scales randomly chosen from { 12 , 1
4 ,

1
6}.

Three types of transformations are employed sequentially into a face image with
probability of 0.5. The first two strategies are inspired by the generally explored
principles in deblurring works where the blur effects can be modeled as some
convolution operations between the original image and blur filter kernels. Fig. 3
shows some augmented images. The COSONet is trained on the mixtured face
datasets containing still faces and augmented faces with video-type noises.
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Fig. 3. Augmented video-like images. Upper row is the original still faces. Left, middle
and right section of the lower row are augmented faces with motion blur, out-of-focus
blur and low resolution respectively.

3.3 Loss function

We use softmax loss function to train our COSONet, as it can converge much fast,
and at the same time it can get impressive performance. But another problem
should be also noticed. After data augmentation, face images in the dataset are
in various quality. As noted in [29], features for low-quality face images tend to
have smaller L2-norm comparted to high-quality ones if only softmax loss is used.
In such situation, low-quality face images are more likely to be ignored while
training. To alleviate this issue, we should balance features’ L2-norm regardless
of image qualities. Specifically, we utilize the lately proposed ring loss [42] to
regularize the features, which is given by:

Lr = (‖f‖2 −R)2 (6)

where R is a learnable scale parameter. Through ring loss, the network can learn
to normalize the feature on a hypersphere with the same L2-norm. Finally, our
loss function becomes:

Ls = −log
eW

>
k f+bk∑K

i=1 e
W>

i f+bi

+ λLr (7)

where k is the ground-truth label and K is the total number of subjects. Ls con-
tains two terms, the former is softmax loss to get discriminative face descriptors,
and the latter is ring loss to constrain the L2-norm of face descriptors. A scalar
λ is used for balancing the two loss functions.

4 Experiments

We divide our experiments into several sections. In the first section, we introduce
our datasets and evaluation protocols. In the second section, we present our
implementation details. In the third section, we conduct component analysis for
each technique of the proposed method. In the fourth section, we compare with
state-of-the-art methods. Then we visualize what are learned by the networks.
Finally, we provide a further discussion.
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4.1 Datasets and evaluation protocols

We have two training datasets, one is WebFace [40] with about 0.5M images of
10,575 subjects, and the other one is the recent published VGGFace2 [4] with
3.1M images of 8,631 subjects. Since WebFace is small, we train on it for our
later detailed component analysis (in Sec. 4.3). VGGFace2 is quite large, we
train on it to get comparable performance with the state-of-the art methods (in
Sec. 4.4). We evaluate our method on two datasets: IARPA Janus Benchmark
A (IJB-A) [19] and Point-and-Shoot Challenge (PaSC) [2].

IJB-A dataset contains 5,712 still images and 20,414 video frames of 500
subjects. All images and frames are captured in unconstrained conditions and
cover large variations in pose and image quality. Each sample or instance in
IJB-A is called a ‘template’ which consists of the mixture between still images
and video frames. IJB-A provides two protocols: 1:1 face verification and 1: N
face identification. We only focus on the former protocols where 10-fold testing is
conducted. PaSC dataset includes 2,802 videos of 265 subjects. Half of its videos
are captured by hand held camera (denoted as PaSC-H), the rest are captured
by controlled camera (denoted as PaSC-C). Subjects in the dataset are asked
to do predesigned actions. Thus, faces cover large pose variations and serious
video-type noises. We test on PaSC dataset with the provided face verification
protocol.

We report the true acceptance rate (TAR) at different false acceptance rates
(FARs).

4.2 Implementation details

Preprocessing. We use MTCNN [41] algorithm to detect faces in both training
and testing datasets. The bounding box is extended by a factor of 0.3 to include
some context. The shorter side of each image is resized into 256 and the other
side is resized accordingly to keep the original ratio. While training, a region
of 224× 224 is randomly cropped from an image or its horizontal flip, with the
per-pixel mean subtracted. While testing, a region of 224× 224 is cropped from
the center of each image.
Detailed network configurations. We implement our method with PyTorch 3

[28]. The local feature extraction block of our COSONet is based on two ResNet-
type networks: ResNet-18 and ResNet-34. We slightly change the CNN structure
to obtain 196 local features after the last convolution layers. ResNet-type net-
works have five convolution blocks. We keep the first 4 convolution blocks the
same. A convolution layer for down sampling in the 5th convolution block is
canceled. The details of network structure are given in Table 1. We empirically
run Newton-Schulz iteration 5 times (N = 5), following [20] and set the output
size of 2D-FC to be 64×64. Compared with ResNet, COSONet only brings extra
256 × 64 parameters in 2D-FC layer (W in Eq. 5). More detailed settings are
provided in the supplemental material.

3 The source code is available at http://vipl.ict.ac.cn/resources/codes.
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Table 1. The network structure of plain ResNet-type networks and our COSONet
structure. SO normed: second order pooling and approximate matrix square root nor-
malization. conv co: 1× 1× 256 convolution layer for compressing the channels.

Plain ResNet-18 or ResNet-34

layer name conv(1-4) conv5 average pooling Flattened
output size 14×14×256 7×7×512 1×1×512 512-d

Our COSONet

layer name conv(1-4) conv5 conv co SO normed 2D-FC Flattened
output size 14×14×256 14×14×512 14×14×256 256×256 64×64 4096-d

Detailed settings in testing. For face images in a template (in IJB-A) or
video (in PaSC), each face image is forwarded into the network to get its face
descriptor. Since we focus on the image-level feature extractors rather than video
modeling modules, we just apply simple video aggregation method, average pool-
ing across face descriptors in the template or video to get a compact video repre-
sentation. Finally, the similarity between two video representations is computed
by the cosine similarity.

4.3 Component analysis

Effect of the COSONet structure. In this part, we mainly study the effect
of COSONet structure. We implement our COSONet based on two ResNet-type
networks: ResNet-18 and ResNet-34 as mentioned above. These two networks
and their COSONet are trained from scratch on WebFace. The initial learning
rate is 0.2 and decreased by a factor of 0.5 for every 3 epochs. The batch size
is 256. For fair comparison, we only use softmax loss as the loss function. Ta-
ble 2 shows that our COSONet can improve the performance by a large margin
no matter what type of networks is used. It indicates that our COSONet has
stronger modeling capacity than plain fisrt-order networks to deal with large
face variations in videos.

Table 2. Performance comparison for plain network and COSONet on IJB-A and
PaSC. ‘–’ and ‘X’ represent plain network and COSONet respectively. 10−3 and 10−2

indicate different FARs.

Method IJB-A PaSC-H PaSC-C

CNN COSO 10−3 10−2 10−3 10−2 10−3 10−2

ResNet-18 – 0.567±0.058 0.788±0.025 0.029 0.266 0.352 0.749
ResNet-18 X 0.616±0.043 0.811±0.024 0.088 0.400 0.613 0.873

ResNet-34 – 0.591±0.056 0.813±0.025 0.080 0.381 0.506 0.844
ResNet-34 X 0.682±0.045 0.858±0.019 0.185 0.581 0.730 0.927
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Table 3. Performance comparison for without or with effect of data augmentation on
IJB-A and PaSC. ‘–’ and ‘X’ represent without and with data augmentation respective-
ly. 10−3 and 10−2 indicate different FARs. The ROC curve is shown in supplemental
material.

Method IJB-A PaSC-H PaSC-C

Model Aug 10−3 10−2 10−3 10−2 10−3 10−2

A – 0.591±0.056 0.813±0.025 0.080 0.381 0.506 0.844
B X 0.644±0.057 0.841±0.019 0.182 0.478 0.536 0.845

Effect of data augmentation. In this part, we fix the network structure as
ResNet-34 and loss function as softmax loss to study the effect of data augmen-
tation. For WebFace (0.5M), we augment the same number of images with the
original data. ResNet-34 is first trained on WebFace dataset (0.5M) and then
is finetuned on the augmented WebFace dataset (total 1.0M). Table 3 presents
the comparison results. Notably, the base network trained on WebFace performs
badly on PaSC hand held mode but after it is finetuned on the augmented Web-
Face, they can get much improvement. This is mainly because faces in PaSC
hand held mode are in serious capture condition and have a large domain gap
with still faces in WebFace. Through augmentation, the gap could be narrowed.
On other hand, compared to the hand held mode, the improvement on controlled
mode is slightly small, which demonstrates that faces in controlled mode are sim-
ilar to still faces. Overall, data augmentation can improve the performance. We
attribute this to the fact that the network can automatically learn robust feature
against video-type noises from the augmented data.

Effect of ring loss for our proposed method. As the effectiveness of ring
loss has been validated in [42] with only first-order CNNs, in this part, we verify
its influence for our COSONet and data augmentation strategy. The local feature
extraction block of COSONet is based on ResNet-34. Training data are the same
as the last part. Table 4 displays the result. For Model I (COSONet only with
softmax loss) and Model II (COSONet with softmax loss and ring loss), we can
see that ring loss also takes effects on our COSONet. For Model II and Model

Table 4. Performance comparison for the impact of ring loss. ‘–’ and ‘X’ represent
without or with the corresponding technique. The ROC curve is shown in supplemental
material.

IJB-A PaSC-H PaSC-C

Model COSO Aug ring loss 10−3 10−2 10−3 10−2 10−3 10−2

I X – – 0.682±0.045 0.858±0.019 0.185 0.581 0.730 0.927

II X – X 0.735±0.042 0.885±0.014 0.320 0.693 0.794 0.935

III X X X 0.758±0.037 0.894±0.014 0.470 0.805 0.829 0.951
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Table 5. Comparative performance on IJB-A dataset. The network of model D† and
D

′
are the same as model D, but their pooling schemes are different in test stage. D†

utilizes media-pooling where images in each media are first aggregated separately by
average pooling according to the media id, as in [39]. D

′
adopts the SoftMax score

pooling which is also applied in [26, 42]. ∗: Ring loss [42] didn’t provide the result at
FAR=10−2 and the standard deviation in its paper.

Method 10−3 10−2

Existing Methods
Ring loss [42] 0.915∗ –
VGGFace2 [4] 0.921±0.014 0.968±0.006
Quality Aware Network [24] 0.893±0.392 0.942±0.153
Neural Aggregation Network [39] 0.881±0.011 0.941±0.008
DREAM [3] 0.868±0.015 0.944±0.009
Template adaptation [8] 0.836±0.027 0.939±0.013
Data augmentation + Video Pooling [26] 0.725±0.044 0.886±0.017
Unsupervised Domain Adaptation [32] 0.649±0.022 0.864±0.007
Our approach
Model COSO Aug ring loss

A – – – 0.854±0.032 0.949±0.010
B X – – 0.881±0.023 0.957±0.006
C X X – 0.883±0.024 0.952±0.006
D X X X 0.902±0.022 0.958±0.005

D† X X X 0.915±0.015 0.962±0.005

D
′

X X X 0.913±0.014 0.963±0.004

III (with data augmentation), data augmentation gets similar improvement as
the last part.

4.4 Comparison with state-of-the-art methods

In this section, we compare our whole approach with the state-of-the-art meth-
ods. To get a more powerful COSONet, we train the network on VGGFace2
and its augmented data where we augment 1.0M video-like images. For the local
feature extraction of COSONet, we implement it based on ResNet-34.

Table 5 and Table 6 present our best performance on IJB-A and PaSC, as well
as previously reported results by state-of-the-art methods. We also gradually add
each technique to evaluate its influence. The results of other works are directly
copied from their original papers.

First, in view of Model A and Model B, Model A is trained with softmax loss
as a baseline. When we change the network to our COSONet (Model B), we ob-
serve consistent improvement. On IJB-A dataset, for example, TAR@FAR=10−3

increases from 0.854 to 0.881 and even a larger gain on PaSC hand held mode,
from 0.429 to 0.596.

Second, for Model B and Model C, we finetune Model C from Model B on the
augmented dataset with our generated 1.0M video-like images. Although there
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Table 6. Comparative performance on PaSC dataset.

PaSC-H PaSC-C

Method 10−3 10−2 10−3 10−2

Existing Methods
Trunk-Branch Ensemble CNN [9] – 0.962 – 0.958
Attention-aware [31] – 0.937 – 0.956
DAN [30] – 0.803 – 0.920
CERML [16] – 0.773 – 0.801
SPDNet [14] – 0.728 – 0.801
GrassmannNet [17] – 0.727 – 0.805
Our approach
Model COSO Aug ring loss

A – – – 0.429 0.811 0.858 0.955
B X – – 0.596 0.879 0.884 0.962
C X X – 0.765 0.934 0.902 0.966
D X X X 0.852 0.960 0.927 0.974

is no improvement on IJB-A, on PaSC hand held mode the improvement is
prominent, from 0.596 to 0.765 when TAR@FAR=10−3. This is mainly because
faces in PaSC hand held mode are in serious captured condition as mentioned
earlier.

Finally, we finetune Model D from Model C with softmax loss and ring loss
to get the ultimate model. On IJB-A dataset, we apply different pooling schemes
other than the average feature pooling, during testing. Model D† and Model D

′

explore media pooling [39] and SoftMax score pooling [26] respectively. We get
comparable performance against other works. Ring loss [42] utilized the same loss
function and the same pooling scheme (SoftMax score pooling) in test stage with
our Model D

′
. Its network (ResNet-64) is deeper than ours but the performance

is similar. The network of VGGFace2 [4] is trained on VGGFace2 dataset and
then finetuned on MS-Celeb-1M [12]. Their datasets are larger than ours but the
performance is also similar. On PaSC dataset, we get comparable and even better
performance than other works on hand held and controlled mode respectively.
The method of Trunk-Branch Ensemble CNN [9] finetuned their network on
PaSC, whereas, we didn’t.

4.5 Feature Visualization

To further investigate the effectiveness of our COSONet, we compare its feature
response with the plain first-order network in Fig. 4. It can be seen that our
COSONet can automatically focus on discriminative face regions, which has
illustrated its effective modeling capacity to mitigate the pose variation problem.
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Fig. 4. In each group, the first is the inputed face image, the second and the third
are the corresponding averaged feature maps along the channel dimension of the plain
first-order network and our COSONet. The two feature maps are respectively from the
output of the fourth block convolution layer of Model A and Model B (in Sec. 4.4.).

4.6 Discussion

As for media pooling on IJB-A dataset (Model D† in Table 5), there are two
types of media images in a template, video frames and still images. As [39], we
first aggregate images in each media by average pooling and then combine these
two media features by averaging. The exact equation is given by

v =
1

2|S|
∑
f∈S

f +
1

2|V|
∑
f∈V

f (8)

where S and V represent the set of face descriptors for still images and video
frames within a template, respectively. | · | is the size of a set. v is the video
representation. We observe media pooling can get some enhancement in our
paper and other papers [39, 8]. We dig slightly deeper into this. We find the
average ratio between the number of video frames (|V|) and the number of still
images (|S|) in each template is 7.36 : 1. This means that media pooling is
actually a weighted average pooling. Weights for video frames are smaller than
those for still images. However, this pooling scheme is biased to IJB-A dataset.

5 Conclusions

We propose a whole framework for extracting robust image-level face descriptors
for VFR. Extensive experiments have validated the superiority of each technique
and the proposed method. Existing video modeling methods can be integrated
into the framework to further refine the video representation. Nevertheless, we
attribute the good performance of our method to three aspects: 1) COSONet is
superior to first-order network to handle large face variations. In future we will
fuse multiple order information to encode local features. 2) data augmentation
can upgrade the robustness of the face descriptors, and 3) an elaborate mixture
loss function is adopted to the data characteristics.
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