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Abstract

Existing state-of-the-art salient object detection net-

works rely on aggregating multi-level features of pre-

trained convolutional neural networks (CNNs). Compared

to high-level features, low-level features contribute less to

performance but cost more computations because of their

larger spatial resolutions. In this paper, we propose a novel

Cascaded Partial Decoder (CPD) framework for fast and

accurate salient object detection. On the one hand, the

framework constructs partial decoder which discards larg-

er resolution features of shallower layers for acceleration.

On the other hand, we observe that integrating features of

deeper layers obtain relatively precise saliency map. There-

fore we directly utilize generated saliency map to refine

the features of backbone network. This strategy efficiently

suppresses distractors in the features and significantly im-

proves their representation ability. Experiments conducted

on five benchmark datasets exhibit that the proposed model

not only achieves state-of-the-art performance but also run-

s much faster than existing models. Besides, the proposed

framework is further applied to improve existing multi-level

feature aggregation models and significantly improve their

efficiency and accuracy.

1. Introduction

Recently, deep learning has achieved surprising perfor-

mance in salient object detection for it providing abun-

dant and discriminative image representations. The early

deep saliency methods [15, 16, 32] utilize CNNs to predict

saliency scores of image regions and obtain accurate salien-

cy maps with high computational complexity. In the follow-

ing works, fully convolutional network (FCN) [24] based

Figure 1: (a) Maximum F-measure of six side outputs of the origi-

nal DSS [9] model in PASCAL-S [19] dataset. (b) We set inference

time of backbone network as 1, and show inference time of each

side output here. The performance growth is getting slower and

the inference time rapidly increases when gradually integrating

features from high-level 6 to low-level 1.

encoder-decoder architecture is widely applied for salien-

t object detection. The encoder is the pre-trained image

classification model (e.g. VGG [29] and ResNet [8]) which

provides multi-level deep features: the high-level features

with low resolutions represent semantic information, and

the low-level features with high resolutions represent spa-

tial details. In the decoder, these features are combined to

generate accurate saliency maps. Researchers have devel-

oped various decoders [9, 17, 20, 21, 25, 41, 42] to integrate

low-level and high-level features.

However, two drawbacks exist in these deep aggregation

methods. On the one hand, compared to high-level fea-

tures, low-level features contribute less to the performance

of deep aggregation methods. In Fig. 1(a), we present per-

formances of different side outputs of the DSS [9] model.

It is obvious that the performance tends to saturate quick-

ly when gradually aggregating features from high-level to

low-level. On the other hand, due to the large resolutions
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Figure 2: The original image and five-level feature maps

from VGG16 [29]. The Conv3 3 feature still retains edge

information. Hence the Conv1 2 and Conv2 2 features with

large resolutions are not under consideration in the pro-

posed framework.

of low-level features, integrating them with high-level fea-

tures obviously enlarges the computational complexity as

shown in Fig. 1(b). However, detecting and segmenting

salient objects should be fast since this process is often a

preprocessing stage to more complex operations [3]. In con-

sequence, it is essential to design a mechanism to eliminate

the impact of low-level features on computational complex-

ity while ensuring the performance.

When CNNs go deep, feature gradually changes from

low-level representation to high-level representation. Hence

deep aggregation models may recover spatial details of

saliency maps when only integrating features of deeper lay-

ers. In Fig. 2, we show examples of multi-level feature

maps of VGG16 [29]. Compared to low-level features of

Conv1 2 and Conv2 2 layers, the feature of Conv3 3 layer

also reserve edge information. Besides, background regions

in feature maps may result in inaccuracy of saliency maps.

Previous works make use of adaptive attention mechanis-

m [21, 41] to solve this problem. However, the effect of this

mechanism relies on the accuracy of the attention map. S-

ince fusing features of deeper layers will generate relatively

precise saliency map, we can directly use this map to refine

features.

In this paper, we propose a novel cascaded partial de-

coder framework, which discards features of shallower lay-

ers to ensure high computational efficiency and then refine

features of deeper layers to improve their representation a-

bility. We modify the standard straight backbone network

to a bifurcated one. This new backbone network contains

two branches with the same architecture. We construct par-

tial decoder which only aggregates features in each branch.

In order to further accelerate the model, we design a fast

and efficient context module to abstract discriminative fea-

tures and integrate them in an upsampling-concatenating

way. Then we propose a cascaded optimization mechanis-

m which utilizes initial saliency map of the first branch to

refine features of the second branch. In order to uniformly

segment the whole salient objects, we propose a holistic at-

tention module to allow the initial saliency map cover more

useful information. In addition, the proposed framework

can be utilized to improve existing deep aggregation mod-

els. When embedding their decoders in our framework, the

accuracy and efficiency will be significantly improved. Our

contributions are summarized as follows:

(1) We propose a novel cascaded partial decoder frame-

work, which discards low-level features to reduce the

complexity of deep aggregation models, and utilizes

generated relatively precise attention map to refine

high-level features to improve the performance.

(2) Experimental results on five benchmark datasets

demonstrate that the proposed model not only achieves

state-of-the-art performance but also runs much faster

than existing models.

(3) Our framework can be applied to improve existing deep

aggregation models. The efficiency and accuracy of im-

proved models will both be significantly improved com-

pared to the original models.

2. Related Work

Over the past two decades, researchers have developed a

large amount of saliency detection algorithms. Traditional

models extract hand-crafted features and are based on vari-

ous saliency assumptions [2, 6, 11, 46]. More details about

traditional methods are concluded in [3, 4]. Here we mainly

discuss deep learning based saliency detection models.

Early works utilize CNNs to determine whether image

regions are salient or not [15, 16, 32, 44]. Although these

models have achieved much better performance than tra-

ditional methods, it is time-consuming to predict saliency

scores for image regions. Then researchers develop more

effective models based on the successful fully convolution-

al network [24]. Li et al. [18] set up a unified framework

for salient object detection and semantic segmentation to

effectively learn the semantic properties of salient object-

s. Wang et al. [34] leverage cascaded fully convolutional

networks to continuously refine previous prediction maps.

Recently, researchers have proved that fusing multi-level

features further improves the performance of dense predic-

tion tasks [7, 27]. In CNNs, high-level features provide

semantic information, and low-level features contains spa-

tial details which are helpful for refining object boundaries.

Many works [9, 17, 20, 21, 25, 41, 42] follow this strategy

and precisely segment salient objects. Li et al. [17] directly

integrate multi-level features to obtain more advanced fea-

ture representation. Liu and Han [20] first make a coarse

global prediction, and then hierarchically and progressive-

ly refine the details of saliency maps step by step via in-
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Figure 3: (a) Traditional encoder-decoder framework, (b) The proposed cascaded partial decoder framework. We use

VGG16 [29] as the backbone network. Traditional framework generates saliency map S by adopting full decoder which

integrates all level features. The proposed framework adopts partial decoder, which only integrates features of deeper layers,

and generates an initial saliency map Si and the final saliency map Sd.

tegrating local context information. Hou et al. [9] intro-

duce short connections to the skip-layer structures within

the HED [38] architecture. Luo et al. [25] segment salient

objects by combining local contrast feature and global in-

formation through a multi-resolution 4 × 5 grid network.

Zhang et al. [42] first integrate multi-level feature maps in-

to multiple resolutions, which simultaneously incorporate

semantic information and spatial details. Then this work

predicts the saliency map in each resolution and fuses them

to generate the final saliency map. In [41], the work extract-

s context-aware multi-level features and then utilizes a bi-

directional gated structure to pass messages between them.

Liu et al. [21] leverage global and local pixel-wise contex-

tual attention network to capture global and local context in-

formation. Then these modules are incorporated with U-Net

architecture to segment salient objects. In this paper, we ar-

gue that low-level features always contribute less than high-

level features. However, they need more computation cost

than high-level features owing to their larger spatial resolu-

tions. Hence we propose a novel cascaded partial decoder

framework for salient object detection, which does not con-

sider low-level features and utilizes generated saliency map

to refine high-level features.

3. The Proposed Framework

In this paper, we propose a novel cascaded partial de-

coder framework which contains two branches. In each

branch, we design a fast and effective partial decoder. The

first branch generates an initial saliency map which is uti-

lized to refine the features of the second branch. Besides,

we propose a holistic attention module to segment the w-

hole objects uniformly.

3.1. Mechanism of the Proposed Framework

We design the proposed model on the basis of VGG16
network, which is the most widely utilized backbone net-

work in deep salient object detection models. For an in-

put image I with size H × W , we can abstract features at

five levels, which are denoted as {fi, i = 1, ..., 5} with res-

olutions [ H
2i−1 ,

W
2i−1 ]. The decoders proposed in previous

works [41, 42], which are called full decoder in this paper,

integrate all features to generate saliency map S. A uni-

fied architecture of the full decoder is shown in Fig. 3(a)

and it can be represented by DT = g(f1, f2, f3, f4, f5),
where g(·) denotes a multi-level feature aggregation algo-

rithm. Previous works focus on how to develop a more ef-

fective integration strategy.

In Fig. 3(b), we show the architecture of the proposed

cascaded partial decoder framework. Since that the features

of shallower layers contribute less to performance, we con-

struct a partial decoder that only integrates features of deep-

er layers. In order to utilize generated saliency map to refine

features, we design a bifurcated backbone network. We set

the Conv3 3 layer as an optimization layer, and use the last

two convolutional blocks to construct two branches (an at-

tention one and a detection one). In the attention branch,

we design a partial decoder to integrate three-level features

which are denoted as {fa
i = fi, i = 3, 4, 5}. Hence the par-

tial decoder is represented by Da = ga(f
a
3 , f

a
4 , f

a
5 ) and it

generates an initial saliency map Si. After processing of the

proposed holistic attention module, we obtain an enhanced

attention map Sh which is utilized to refine the feature f3.

Because we can obtain relatively precise saliency map via

integrating features of three top layers, the attention map

Sh effectively eliminates distractors in feature f3. Then

we obtain the refined feature fd
3 for detection branch via

element-wise multiplying the feature and the attention map:

fd
3 = f3 ⊙ Sh. Hence the following two-level features of

the detection branch are denoted as {fd
4 , f

d
5 }. Through con-

structing another partial decoder Dd = gd(f
d
3 , f

d
4 , f

d
5 ) for

the detection branch, the proposed model outputs the final

saliency map Sd. For convenience, we set ga = gd in this

paper. The details of the proposed holistic attention mod-

ule and the partial decoder are described in Section 3.2 and

Section 3.3 respectively.

We jointly train the two branches with ground truth.

The parameters of the two branches are not shared. Given

{Si, Sd} and the corresponding label l, the total loss Ltotal
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is formulated as:

Ltotal = Lce(Si, l|Θi) + Lce(Sd, l|Θd). (1)

Lce is the sigmoid cross entropy loss:

Lce(Θ) = −

N∑

j=1

∑

c∈{0,1}

δ(lj = c) log p(Sj = c|Θ), (2)

where N is the pixel number, δ is the indicator function, j

denotes pixel coordinate and Θ = {Θi,Θd} are parameter

sets corresponding to the saliency maps S = {Si, Sd}. It

is obvious that Θi is a proper subset of Θd, which indicates

that the two branches work in an alternating way. On the

one hand, the attention branch provides precise attention

map for the detection branch, which leads to that the de-

tection branch segments more accurate salient objects. On

the other hand, the detection branch could be considered as

an auxiliary loss of the attention branch, which also helps

the attention branch to focus on salient objects. Joint train-

ing the two branches makes our model uniformly highlights

salient objects while suppressing distractors.

In addition, we can leverage the proposed framework to

improve existing deep aggregation models when we inte-

grate the features of each branch by using the aggregation

algorithms of these works. Even though we raise the com-

putation cost of the backbone network and add one more

decoder when compared to the traditional encoder-decoder

architecture, the total computation complexity is still signif-

icantly reduced because of discarding low-level features in

decoders. Moreover, the cascaded optimization mechanism

of the proposed framework promotes the performance, and

the experiments show that the two branches both outperfor-

m the original models.

3.2. Holistic Attention Module

Given the feature map from the optimization layer and

the initial saliency map from attention branch, we can use

a initial attention strategy which means directly multiply-

ing the feature map with the initial saliency map. When we

obtain an accurate saliency map from the attention branch,

this strategy will efficiently suppress distractors of the fea-

ture. On the contrary, if distractors are classified as salient

regions, this strategy results in abnormal segmentation re-

sults. As a result, we need to improve the effectiveness of

the initial saliency map. More specially, the edge infor-

mation of salient objects may be filtered out by the initial

saliency map because it is difficult to be precisely predict-

ed. In addition, some objects in complex scenes are hard to

be completely segmented. Therefore we propose a holistic

attention module which aims to enlarge the coverage area

of the initial saliency map, and it is defined as follows:

Sh = MAX(fmin max(Convg(Si, k)), Si) (3)

Image GT Initial Attention Holistic Attention

Figure 4: GT is the ground truth. As we can see, the pro-

posed holistic attention module is helpful for segmenting the

whole salient objects and refining more precise boundaries.

where Convg is a convolution operation with a Gaussian

kernel k and zero bias, fmin max(·) is a normalization func-

tion to make the blurred map ranges in [0, 1], and MAX(·)
is a maximum function which tends to increase the weight

coefficient of salient regions of Si because that the convo-

lution operation will blur Si. Compared to the initial at-

tention, the proposed holistic attention mechanism hardly

increases computation cost, and it further highlights the w-

hole salient objects as shown in Fig. 4. Moreover, the size

and standard deviation of Gaussian kernel k are initialized

with 32 and 4. Then it is jointly trained with the proposed

model.

3.3. The Proposed Decoder

Since that the proposed framework consists of two de-

coders, we need to construct a fast integration strategy to

ensure low complexity. Meanwhile, we need to generate

saliency map as accurate as possible. Firstly, in order to cap-

ture global contrast information, we design an effective con-

text module which is inspired by the receptive field block

(RFB) [22]. Compared to the original RFB, we add one

more branch to enlarge the receptive field further. Our con-

text module consists of four branches {bm,m = 1, ..., 4}.

For acceleration, in each branch, we use a 1×1 convolution-

al layer to reduce channel number to 32. For {bm,m > 1},

we add two layers: a (2m−1)×(2m−1) convolutional lay-

er and a 3×3 convolutional layer with (2m−1) dilation [5].

We concatenate the outputs of these branches and reduce

the channel to 32 by an additional 1 × 1 convolutional lay-

er. Then a short connection is added as the original RFB. In

general, given features {f c
i , i ∈ [l, ..., L], c ∈ [a, d]} from

the bifurcated backbone network, we obtain discriminative

features {f c1
i } from the context module. Then we use mul-

tiplication operation to reduce the gap between multi-level

features. Especially, for the top-most feature (i = L), we

set f c2
L = f c1

L . For feature {f c1
i , i < L}, we update it to
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f c2
i via element-wise multiplying itself with all features of

deeper layers. This operation is defined as follows:

f c2
i = f c1

i ⊙ΠL
k=i+1Conv(Up(f c1

k )), i ∈ [l, ..., L−1], (4)

where Up(·) is upsampling feature by a factor 2k−j , and

Conv is a 3 × 3 convolutional layer. At last, we utilize an

upsampling-concatenating strategy to integrate multi-level

features. When we construct a partial decoder and set the

Conv3 3 layer as the optimization layer (l = 3, L = 5),

we obtain a feature map with [H
4
, W

4
] size and 96 channel

number. With 3 × 3 layer and 1 × 1 convolutional layers,

we obtain the final feature map and resize it to [H,W ].

4. Experiment

4.1. Salient Object Detection

4.1.1 Experimental Setup

Evaluation Datasets. We evaluate the proposed model

on five benchmark datasets: ECSSD [39], HKU-IS [16],

PASCAL-S [19], DUTS [33], DUT-OMRON [40].

Evaluation Metrics. We adopt two metrics: mean abso-

lute error (MAE) and F-measure (maxF). We adopt mean

absolute error (MAE) and F-measure as our evaluation met-

rics. According to the different ways for saliency map bi-

narization, there exist two ways to compute F-measure [4].

One is maximum F-measure (denoted as maxF), which is

adopted in [9, 21, 25, 41]. The other is average F-measure

(denoted as avgF), which is adopted in [35, 36, 42, 43]. For

fairly comparison, we compute both maxF and avgF.

Implementation Details. We implement the proposed

model based on the Pytorch1 framework and a GTX 1080Ti

GPU is used for acceleration. Following previous work-

s [21, 35, 36, 41, 43], we train the proposed model on the

training set of DUTS [33] dataset. The parameters of the b-

ifurcated backbone network are initialized by VGG16 [29].

We initialize the other convolutional layers using the default

setting of the Pytorch. All training and test images are re-

sized to 352 × 352. Any post-processing procedure (e.g.

CRF [14]) is not applied in this paper. The proposed model

is trained by Adam optimizer [13]. The batch size is set as

10 and the initial learning rate is set as 10−4 and decreased

by 10% when training loss reaches a flat. It takes nearly six

hours for training the proposed model. The code is available

at https://github.com/wuzhe71/CPD.

4.1.2 Comparison with State-of-the-arts

We compare the proposed model with eight state-of-the-art

deep salient object detection algorithms, including NLD-

F [25], Amulet [42], DSS [9], SRM [35], BMPM [41], PA-

GR [43], DGRL [36] and PiCANet [21]. We implement

1https://pytorch.org/

these models with available source codes or directly evalu-

ate saliency maps provided by authors. Especially, NLDF,

Amulet and DSS are originally trained on MSRA10K [6]

dataset or MSRA-B [23] dataset (there is a large overlap

between these two datasets). Hence we re-train these three

models on DUTS dataset as other models for fairly com-

parison. We find that training on DUTS dataset will make

deep models work better in complex scenes. Besides, we

also train the proposed model on MSRA-B dataset to com-

pare with these three original models, and the results are

reported in supplementary material.

In Table. 1, we show the quantitative comparison results.

Considering some works use ResNet50 as the backbone, we

also train the proposed model on the basis of this backbone

network. ResNet50 contains four convolutional blocks, and

we set the last layer of the second block as the optimiza-

tion layer. Then we utilize the last two blocks to design

the two branches. In Table. 1, the results of the attention

branch (denoted as “-A”) of the proposed model are also re-

ported. Moreover, we compare the average execution time

with the other models on DUTS dataset, and all scores are

tested on our platform (PAGR only provides saliency map-

s). It is obvious that the proposed model outperforms all

other models in most cases and it runs much faster than ex-

isting models. Only PiCANet-R obtains higher maxF score

than the proposed model on DUT-OMRON dataset. How-

ever, our model runs about 12 times faster than PiCANet-

R. More specially, compared to the improvements on maxF

and MAE, we obtain a larger improvement on avgF. This

demonstrates that the proposed model works much better

in uniformly highlighting salient objects. In addition, we

can find that the results of our attention branch also achieve

comparable results with other models. Meanwhile, the pro-

posed model only with the attention branch runs faster. This

indicates that the proposed model provides two-level salien-

cy maps for real-time applications.

In Fig. 5, we show the qualitative comparison on some

challenging cases: small object, complex scenes, multiple

objects and large object. Even though we discard the low-

level features of backbone network, our model still recovers

precise boundaries of salient objects, and the small object

is still accurately segmented. Moreover, the proposed mod-

el segments more uniform salient objects than the compared

models. It is consistency with the results in Table. 1 that our

model achieves more improvement in avgF score than MAE

and maxF. This phenomenon is owing to the joint training s-

trategy of the proposed model. On one hand, the supervised

attention map of the attention branch makes the detection

branch further concentrate on salient objects. On the oth-

er hand, when training the proposed model, the gradient of

the detection branch also back propagates to the attention

branch. This training mechanism gradually promotes the

proposed model to focus on salient objects. More visual
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Method Backbone FPS
ECSSD [39] HKU-IS [16] DUT-OMRON [40] DUTS [33] PASCAL-S [19]

maxF avgF MAE maxF avgF MAE maxF avgF MAE maxF avgF MAE maxF avgF MAE

Amulet [42] VGG16 21 0.922 0.881 0.057 0.909 0.863 0.047 0.791 0.699 0.072 0.832 0.738 0.062 0.839 0.780 0.095

NLDF [25] VGG16 20 0.915 0.886 0.051 0.908 0.871 0.041 0.759 0.694 0.071 0.830 0.759 0.055 0.840 0.792 0.083

DSS [9] VGG16 23 0.928 0.889 0.051 0.915 0.867 0.043 0.781 0.692 0.065 0.858 0.757 0.050 0.859 0.796 0.081

BMPM [41] VGG16 28 0.928 0.894 0.044 0.920 0.875 0.039 0.775 0.693 0.063 0.850 0.768 0.049 0.862 0.770 0.074

PAGR [43] VGG19 - 0.927 0.894 0.061 0.918 0.886 0.048 0.771 0.711 0.072 0.855 0.788 0.055 0.851 0.803 0.092

PiCANet [21] VGG16 7 0.931 0.885 0.046 0.921 0.870 0.042 0.794 0.710 0.068 0.851 0.749 0.054 0.862 0.796 0.076

CPD-A (ours) VGG16 105 0.928 0.906 0.045 0.918 0.884 0.037 0.781 0.721 0.061 0.854 0.787 0.047 0.859 0.814 0.077

CPD (ours) VGG16 66 0.936 0.915 0.040 0.924 0.896 0.033 0.794 0.745 0.057 0.864 0.813 0.043 0.866 0.825 0.074

SRM [35] ResNet50 37 0.917 0.892 0.054 0.903 0.871 0.047 0.769 0.707 0.069 0.827 0.757 0.059 0.847 0.796 0.085

DGRL [36] ResNet50 6 0.925 0.903 0.043 0.914 0.882 0.037 0.779 0.709 0.063 0.834 0.764 0.051 0.853 0.807 0.074

PiCANet-R [21] ResNet50 5 0.935 0.886 0.046 0.919 0.870 0.043 0.803 0.717 0.065 0.860 0.759 0.051 0.863 0.798 0.075

CPD-RA (ours) ResNet50 104 0.934 0.907 0.043 0.918 0.882 0.038 0.783 0.725 0.059 0.852 0.776 0.048 0.855 0.807 0.077

CPD-R (ours) ResNet50 62 0.939 0.917 0.037 0.925 0.891 0.034 0.797 0.747 0.056 0.865 0.805 0.043 0.864 0.824 0.072

Table 1: Comparison of different methods on five benchmark datasets and four metrics including FPS, MAE (lower is better),

max F-measure (higher is better) and average F-measure. The comparison is under two settings (with VGG [29] and

ResNet50 [8] backbone netowrk). The best result of each setting is shown in Red. “-R” means using ResNet50 as the

backbone. “-A” means the results of the attention branch. All method are the trained on training set of DUTS [33]. There is

not available code of PAGR [43] and the author only provides the saliency maps.

Image GT CPD CPD-R CPD-A CPD-RA PiCANet-R PiCANet PAGR DGRL BMPM SRM DSS Amulet NLDF

Figure 5: Visual comparisons of the proposed model and existing state-of-the-art algorithms in some challenging cases:

small object, complex scene, multiple objects and large object.

comparison results are shown in supplementary material.

4.1.3 Application in Existing Models

Through integrating features of each branch via using

aggregation algorithms proposed in existing models, our

framework can be utilized to improve these works. In

this paper, we apply the proposed framework in three

deep aggregation models (BMPM, Amulet, NLDF). NLD-

F adopts a typical U-Net architecture, BMPM proposes a

bi-directional decoder with gate function and Amulet inte-

grates multi-level feature maps in multiple resolutions. We

implement the improved models in their respectively default

deep learning library (tensorflow [1] for BMPM and NLD-

F, caffe [12] for Amulet). For BMPM and NLDF, we train

the improved models (denoted as BMPM-CPD and NLDF-

CPD) by using default settings, and it only needs to change

the learning rate from the original 10−6 to 10−5. For A-

mulet, we train the improved model (denoted as Amulet-

CPD) by using the completely same settings as the original

model.

In Table. 2, we show the quantitative results of the orig-

inal models and the improved models (-CPD-A, -CPD) on

five benchmark datasets. We can see that each improved

model outperform its original model. More specially, the

improved models obtain a large improvement on the two

most challenging DUT-OMRON and DUTS datasets. In

addition, the improved models (-CPD and -CPD-A) runs

about 2 and 3 times faster than the original models respec-

tively. In conclusion, the proposed cascaded partial decoder

framework can be used to improve deep aggregation mod-

els with different kinds of decoders. In Fig. 6, we show the

qualitative results on challenge cases: multiple objects, s-

mall object, large object and complex scene. The upper two

rows show that the improved models further focus on tar-

get regions and suppress distractions. The under two rows

3912



Method FPS
ECSSD [39] HKU-IS [16] DUT-OMRON [40] DUTS [33] PASCAL-S [19]

maxF avgF MAE maxF avgF MAE maxF avgF MAE maxF avgF MAE maxF avgF MAE

BMPM [41] 28 0.928 0.894 0.044 0.920 0.875 0.039 0.775 0.693 0.063 0.850 0.768 0.049 0.862 0.803 0.074

BMPM-CPD-A 82 0.932 0.901 0.046 0.920 0.882 0.037 0.796 0.731 0.057 0.864 0.799 0.046 0.861 0.817 0.074

BMPM-CPD 47 0.935 0.907 0.043 0.925 0.888 0.035 0.804 0.740 0.056 0.870 0.808 0.044 0.868 0.822 0.072

NLDF [25] 21 0.915 0.886 0.051 0.908 0.871 0.041 0.759 0.694 0.071 0.830 0.759 0.055 0.840 0.792 0.083

NLDF-CPD-A 75 0.918 0.889 0.049 0.914 0.873 0.039 0.775 0.710 0.061 0.837 0.773 0.050 0.841 0.793 0.083

NLDF-CPD 48 0.922 0.896 0.044 0.916 0.880 0.036 0.781 0.721 0.060 0.842 0.786 0.048 0.843 0.800 0.080

Amulet [42] 21 0.922 0.881 0.057 0.909 0.863 0.047 0.791 0.699 0.072 0.832 0.738 0.062 0.839 0.780 0.095

Amulet-CPD-A 61 0.925 0.889 0.053 0.910 0.864 0.045 0.790 0.708 0.070 0.832 0.747 0.060 0.842 0.784 0.091

Amulet-CPD 45 0.934 0.901 0.047 0.920 0.878 0.040 0.805 0.735 0.063 0.845 0.771 0.055 0.851 0.801 0.085

Table 2: Comparison of the original models and the improved models (-CPD-A and -CPD).

Image GT BMPM BMPM-CPD-A BMPM-CPD Amulet Amulet-CPD-A Amulet-CPD NLDF NLDF-CPD-A NLDF-CPD

Figure 6: Visual comparisons of original models (BMPM, Amulet, NLDF) with improved models (-CPD-A, -CPD).

Settings
DUTS [33] PASCAL-S [19]

maxF avgF MAE maxF avgF MAE

CPD (with ia) 0.862 0.803 0.045 0.862 0.821 0.075

CPD (with ha) 0.864 0.813 0.043 0.866 0.825 0.074

Amulet-CPD (with ia) 0.842 0.763 0.056 0.849 0.794 0.087

Amulet-CPD (with ha) 0.845 0.771 0.055 0.851 0.801 0.085

BMPM-CPD (with ia) 0.865 0.791 0.045 0.867 0.818 0.072

BMPM-CPD (with ha) 0.870 0.808 0.044 0.868 0.822 0.072

NLDF-CPD (with ia) 0.838 0.777 0.051 0.840 0.793 0.084

NLDF-CPD (with ha) 0.842 0.786 0.048 0.843 0.800 0.080

Table 4: Comparison of initial attention (ia) and holistic

attention (ha) in four models (the proposed model and three

improved models).

show that the improved model further highlights the whole

objects.

4.1.4 Analysis of the Proposed Framework

Effectiveness of holistic attention. Here we demonstrate

the effectiveness of the proposed holistic attention model

in the proposed model and the three improved models. We

compare these models with holistic attention and the models

with initial attention, and the results are shown in Table.4. It

is shown that holistic attention outperforms initial attention.

Selection of Optimization Layer. In the proposed model,

we set Conv3 3 layer as the optimization layer. Here we

compared the proposed model with different optimization

layers (Conv2 2 and conv4 3). In addition, we also report

the results of no optimization layer, which means integrat-

ing all-level features via the proposed decoder. We do not

test the proposed model with Conv1 2 optimization layer

because this setting will increase the computation cost via

adding one more full decoder; thus requirements of reduc-

ing computation cost will not be achieved. The comparison

results on five benchmark datasets are shown in Table. 3.

In conclusion, we set the conv3 3 layer as the optimization

layer considering its best performance. When we refine the

shallower feature (Conv2 2), the computation complexity

increases and the performance decreases. The reason might

be that the feature of shallower layer has not been enough

trained. When we refine the deep feature (Conv4 3), the

computation cost and the performance both decrease. This

is because that resolution of the feature in the Conv4 3 layer

is smaller. The accuracy and efficiency of settings (Conv2 2
and Conv4 3) both outperform the full decoder, which vali-

dates the effectiveness of the proposed framework.
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Settings FPS
ECSSD [39] HKU-IS [16] DUT-OMRON [40] DUTS [33] PASCAL-S [19]

maxF avgF MAE maxF avgF MAE maxF avgF MAE maxF avgF MAE maxF avgF MAE

Conv2 2 38 0.936 0.903 0.042 0.925 0.884 0.036 0.792 0.720 0.063 0.861 0.778 0.048 0.865 0.810 0.076

Conv3 3 66 0.936 0.915 0.040 0.924 0.896 0.033 0.794 0.745 0.057 0.864 0.813 0.043 0.866 0.825 0.074

Conv4 3 90 0.931 0.910 0.041 0.920 0.890 0.034 0.787 0.737 0.059 0.855 0.801 0.045 0.863 0.824 0.072

Full Decoder 30 0.922 0.891 0.051 0.911 0.873 0.042 0.758 0.692 0.070 0.843 0.766 0.050 0.853 0.807 0.077

Table 3: Comparison of the proposed model with different optimization layers and no optimization layer (full decoder).

Image GT CPD-A CPD

Figure 7: Some Failure examples of the proposed model.

When the attention branch only localizes a small part of

target regions, our model performs poorly.

Failure Examples. The performance of the proposed mod-

el relies on the accuracy of the attention branch. When the

attention branch detects clutters as target regions, our model

will obtain wrong results. In Fig. 7, we show some failure

examples of our model. When a large target region is not

segmented correctly, the proposed model is unable to seg-

ment the whole objects.

4.2. Application in Other Tasks

In this paper, we also evaluate the proposed model on

other two binary segmentation tasks: shadow detection and

portrait segmentation.

Shadow Detection. We re-train our model on the training

set of SBU [30] dataset and test the model on three public

shadow detection datasets: test set of SBU, ISTD [31] and

UCF [45]. Moreover, we apply the widely-used metric BER

(balanced error rate) for quantitative comparison. We com-

pare our method with five deep shadow detection methods:

JDR [31], DSC [10], DC-DSPF [37], scGAN [26], Stacked-

CNN [30]. In addition, we re-train three salient object de-

tection models for shadow detection: NLDF [25], DSS [9],

BMPM [41]. The results are shown in Table. 5, and the

proposed model outperforms the other models in all cases.

Portrait Segmentation. We use the data from [28]. And

we re-train NLDF, DSS, BMPM on this dataset. The results

are shown in Table 6. It can be seen that the proposed model

outperforms existing algorithms.

SBU [30] ISTD [31] UCF [45]

Method BER↓ BER↓ BER↓
NLDF [25] 7.02 7.50 7.69

DSS [9] 7.00 10.48 10.56

BMPM [41] 6.17 7.10 8.09

scGAN [26] 9.10 8.98 11.50

StackedCNN [30] 11.00 10.45 13.00

JDR [31] 8.14 7.35 11.23

DC-DSPF [37] 4.90 - 7.90

DSC [10] 5.59 8.24 8.10

CPD (ours) 4.19 6.76 7.21

Table 5: Comparing the proposed method with state-of-the-

arts for shadow detection (DSC, DC-DSPF, JDR, StackedC-

NN, scGAN), and for salient object detection (Amulet, NLD-

F, BMPM, DSS).

Methods PFCN+ [28] NLDF [25] DSS [9] BMPM [42] CPD (Ours)

Mean IoU 95.90% 95.60% 96.20% 96.20% 96.60%

Table 6: Quantitative Comparison on Portrait Segmenta-

tion.

5. Conclusion

In this paper, we propose a novel cascaded partial de-

coder framework for fast and accurate salient object detec-

tion. When constructing decoders, the proposed framework

discards features of shallower layers to improve the com-

putational efficiency, and utilizes generated saliency map to

refine features to improve the accuracy. We also propose

a holistic attention module to further segment the whole

salient objects and an effective decoder to abstract discrim-

inative features and quickly integrate multi-level features.

The experiments show that our model achieves state-of-the-

art performance on five benchmark datasets and runs much

faster than existing deep models. To prove the generaliza-

tion of the proposed framework, we apply it to improve ex-

isting deep aggregation models and significantly improve

their accuracy and efficiency. Besides, we validate the ef-

fectiveness of the proposed model in two tasks of shadow

detection and portrait segmentation.
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