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Abstract

Domain adaptation attempts to transfer the knowledge
obtained from the source domain to the target domain, i.e.,
the domain where the testing data are. The main cha-
llenge lies in the distribution discrepancy between source
and target domain. Most existing works endeavor to learn
domain invariant representation usually by minimizing a
distribution distance, e.g., MMD and the discriminator
in the recently proposed generative adversarial network
(GAN). Following the similar idea of GAN, this work pro-
poses a novel GAN architecture with duplex adversarial dis-
criminators (referred to as DupGAN), which can achieve
domain-invariant representation and domain transforma-
tion. Specifically, our proposed network consists of three
parts, an encoder, a generator and two discriminators. The
encoder embeds samples from both domains into the latent
representation, and the generator decodes the latent rep-
resentation to both source and target domains respectively
conditioned on a domain code, i.e., achieves domain trans-
formation. The generator is pitted against duplex discrim-
inators, one for source domain and the other for target,
to ensure the reality of domain transformation, the latent
representation domain invariant and the category informa-
tion of it preserved as well. Our proposed work achieves
the state-of-the-art performance on unsupervised domain
adaptation of digit classification and object recognition.

1. Introduction
The deep learning technique has achieved great success

in many area including the computer vision [26, 45, 22, 16,

5], speech recognition [23, 7, 21, 41, 49], etc. Generally,

the deep models are usually trained on a large scale labeled

training data and tested on the data which share similar dis-

tribution as the training one. Otherwise, the performance

degenerates badly when the distribution of the training and

testing data are different. So for a new task, the training data

Figure 1: Illustration of domain adaptation. Domain adaptation

attempts to mitigate the discrepancy between source and target do-

main. After adaptation, the source and target domains are expected

to share the same or similar distribution, i.e., samples of the same

class from both source and target domains should be close to each

other. The source domain samples are represented by red circles

and target samples are blue ones.

are usually needed to recollect and that is quite expensive,

even impossible. Transfer learning is a preferable technique

that can alleviate the cost of recollecting large scale labeled

data by transferring knowledge from a different but related

sophisticated domain. Domain adaptation is a sub-problem

of the general transfer learning, which pays attention to the

case where the training data (i.e., source domain) and the

testing data (i.e., target domain) share the same task but fol-

low different distributions [37], as shown in Figure 1.

According to the degree to which the data of target do-

main is labeled, domain adaptation can be categorized in-

to supervised, semi-supervised and unsupervised domain

adaptation. In supervised domain adaptation scenario [25]

and semi-supervised one [9, 27], all or part of the target do-

main samples are labeled but the number of labeled data is

too limited to learn a satisfactory model for the target do-

main. In unsupervised domain adaptation scenario [1, 12],

all target domain samples are unlabeled. For all three sce-

narios, the source domain samples are labeled. This work

mainly focuses on the unsupervised domain adaptation, of

which only related works are reviewed below.

In the early days, most methods deal with the unsuper-

vised domain adaptation problem via instance re-weighting
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to obtain the shared similar distribution with the target do-

main, such as sample selection bias [50, 11, 24] and covari-

ate shift [46, 3]. These instance re-weighting approaches

are suitable for those scenarios where the source and target

domains share the same support.

However, in many wild scenarios, the supports of source

and target domains are different which means the instance

re-weighting is not applicable. Then methods targeting

on extracting domain invariant representation come up. In

[8], the label information is propagated across different do-

mains to extract the cross-domain representation via a co-

clustering based algorithm. In [36], the Transfer Compo-

nent Analysis (TCA) tries to learn some transfer compo-

nents across domains in a Reproducing Kernel Hilbert S-

pace (RKHS) using Maximum Mean Discrepancy (MMD)

to minimize the discrepancy of two domains. In the ap-

proach of Sampling Geodesic Flow (SGF) [20], each do-

main is modeled as a point on a Grassmann manifold, and

the intermediate subspaces are obtained by sampling points

along the geodesic between the two domain subspaces to

model the domain shift. This work is further extended as

geodesic flow kernel (GFK) [18], which integrates an infi-

nite number of the subspaces to model domain shift between

the source and target domain by the GFK. In [17], a set of

landmarks, i.e., a subset of labeled data from the source do-

main that are distributed most similarly to the target domain,

are discovered to bridge the source and the target domain.

In [43] and [44], both source and target domain data are

projected to a common subspace with low-rank constraint

to reduce the domain discrepancy.

Encouraged by the deep models developed in recen-

t years, many approaches come up to alleviate the discrep-

ancy between source and target domain through deep fea-

ture learning. The methods proposed in [31] and [32] em-

bed deep features into Reproducing Kernel Hilbert spaces

(RKHS) and minimize the maximum mean discrepancy (M-

MD) metric of the features for feature adaptation. In [15], a

deep reconstruction-classification network (DRCN) is pro-

posed to learn common representation for both domains

through the joint objective of supervised classification of

labeled source data and unsupervised reconstruction of un-

labeled target data. In [4], the domain separation networks

(DSN) extracts feature representations that are partitioned

into two components, one for the private information of

each domain and the other for the shared representation

across domains to reconstruct the images and features from

both domains.

In the approaches above, a metric is usually needed in

the objective to measure the discrepancy between domains.

The most commonly used metrics include MMD, K-L and

Bregman divergence [14, 36, 31, 32]. Recently, inspired by

the generative adversarial nets (GANs) [19, 34], the adver-

sarial learning strategy is introduced to restrain the domain

discrepancy for better domain adaptation [47, 51, 30, 29].

Following the existing GAN-based domain adaption

methods, this work proposes a duplex generative adver-

sarial net named DupGAN to achieve domain invariant

feature and domain transformation. As shown in Figure 2,

the proposed DupGAN consists of an encoder, a generator

and duplex discriminators. The encoder embeds input

images from both domains to latent representation; the

generator decodes the latent representation to source and

target domain images conditioned by a domain code to

achieve domain transformation; the generated images are

expected to look like those real source and target domain

images, therefore, the generator is pitted against the follow-

ing duplex discriminators, one for distinguishing the real or

fake source domain images and the other for target domain.

In addition, either discriminator is not only responsible for

the real/fake discrimination to restrict the images from the

generator to be real, but also the categorial classification

for real images to enforce the latent representation domain

invariant and preserve its category information. To do

the final classification, a classifier is established on the

latent representation, which can be also used to predict the

labels of target domain images further used in the training

stage. Our proposed approach achieves quite promising

performance on digit classification and object recognition

tasks.

Briefly, our contributions lie in three folds: (1) A gener-

ative adversarial network with duplex discriminators named

DupGAN is proposed to restrict the latent representation

domain invariant with its category information preserved

and ensure realistic domain transformation; (2) A classifier

is stacked on the latent representation for the final classifica-

tion, which also predicts the labels of target domain images

to make the latent representation discriminative and further

used in the duplex discriminators; (3) DupGAN achieves

the state-of-the-art performance on unsupervised domain

adaptation of digit classification and object recognition.

2. Related Work
The works in [12, 13, 48] handle the domain shift by aug-

menting a gradient reversal layer or employing the adver-

sarial loss for target domain samples. They are adversarial

discriminative methods endeavoring to learn discriminative

and domain invariant representation. The methods based on

generative adversarial networks (GANs) also reduce the dis-

tribution discrepancy by generating samples approximating

the distribution of source or target domain. In [47], a con-

ditional generative adversarial network maps samples from

the target domain to the source one and applies the source

domain classifier to the target domain feature space which is

aligned to source. In [30, 29], a tuple of GANs, each for one

image domain, is designed to map both domain samples into
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Figure 2: Overall structure of our DupGAN. It composes of three parts, an encoder E, a generator G and duplex discriminators Ds and

Dt. The encoder embeds the source domain sample xs and target domain sample xt into latent representation z. The generator decodes z

into source and target domain images respectively conditioned on a domain code a, i.e., domain transformation of xs s−→ xss, xs t−→ xst,

xt t−→ xtt and xt s−→ xts. The transformed images xss and xtt are expected to be the same as the input images xs and xt respectively,

forming a self-reconstruction constraint. The duplex discriminators Ds and Dt aiming for distinguishing the generated images xts/xst

from the real images xs/xt and categorizing xs and xt as well. To do the final classification, a classifier C is built based on the latent

representation z, expecting z to preserve both the common feature of source and target domains and category information.

a shared latent space and further decode any latent represen-

tation into both source and target domains. CycleGAN [51]

proposes a cyclic mapping, i.e., source-target-source and

target-source-target sample translation to implement image

translation. IcGAN [38] and DR-GAN [33] achieve image

translation and domain invariant feature extraction by a con-

ditional generative adversarial net with only one encoder for

all domains (not one encoder for only one domain), control-

ling the domain to be transferred to by a domain indicator

code.

Pseudo Labeling

The re-labeling unlabeled sample methods [42, 40] al-

so attempt to deal with domain discrepancy between source

and target domain. In [42], the labeling metrics are opti-

mized by utilizing the k-nearest neighbors between the un-

labeled target samples and labeled source samples. The

method proposed in [40] back-propagates the category loss

for the target samples based on pseudo-labeled samples.

3. Method
3.1. Overview

For clear description, we first give some definitions.

The labeled source domain images and the unlabeled tar-

get domain images are denoted as Xs = {(xs
i , y

s
i )}ni=1 and

Xt = {xt
j}mj=1, respectively. The source and target domain-

s share the same c categories but follow different distribu-

tion. Unless otherwise specified, the symbols s and t used

in the superscript or subscript denotes the source domain

and target domain respectively.

Our proposed DupGAN is equipped with one encoder,

one generator, and duplex adversarial discriminators aiming

for domain invariant feature extraction and domain trans-

formation. An overview of the proposed method is shown

in Figure 2. The encoder, denoted as E, attempts to map

any image from either source or target domain into a latent

representation z = E(x), which is expected to be domain

invariant and category informative. The generator, denoted

as G, decodes the latent representation into source or target

domain images conditioned by a domain code, i.e., achieve

domain transformation. The generator is pitted against dup-

lex discriminators, one for source domain and the other for

target domain, denoted as Ds and Dt, respectively, to con-

strain the latent representation input into the generator to be

domain invariant and the images from the generator be real.

The classifier stacked on the encoder, denoted as C, tries

to discriminate the categories of the images from both the

source and target domains, and also contributes to the final

classification.

Specifically, each discriminator not only discriminates

the real images from fake (i.e., generated) images, but al-

so distinguishes the category information of real images, in

order to enforce the latent representation z to be domain in-

variant and with category information preserved. The labels

of both source domain images and its counterpart from the

generator G are available which can be directly used in Ds

and Dt. However, the labels of target domain images and

its counterpart from the generator G are unavailable, so the

pseudo categorial labels predicted from the classifier C are
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used when optimizing Dt.

3.1.1 Encoder and Generator

The encoder E aims for transforming an input image from

either source or target domain into a latent representation z
as follows:

z = E(x), x ∈ Xs ∪Xt, (1)

where E can be any kind of deep neural network with pa-

rameters denoted as WE . For convenience, the latent repre-

sentation of any source or target domain sample is denoted

as zs = E(xs) and zt = E(xt), respectively. Then, the w-

hole latent representation space of source and target domain

images are denoted as Zs = E(Xs) and Zt = E(Xt), re-

spectively. So z ∈ Z = Zs ∪ Zt.

The latent representation z is expected to be domain in-

variant. First, consider only one path that transforming all

samples into only source domain. The generator G tries to

decode z into source from either domain. Thus, z tends to

be a roughly (not necessarily totally) joint subspace affined

to source. Similar for the other path for target, z tends to be

a roughly joint subspace affined to target. During the opti-

mization with two paths, the gradients for z from both paths

will compromise when they conflict with each other. This

will lead to a common subspace, let alone the existence of

dominance of commonality which is proved to be the basis

of domain adaptation in [2]. The generator G is formulated

as below:
xa = G(z, a), z ∈ Zs ∪ Zt, (2)

where the domain code a ∈ {s, t} is used to specify which

domain the latent representation is transformed to. Simi-

lar as E, G can be also any kind of deep neural network

with parameters denoted as WG. The input image can be

from either source or target domain, and it can be trans-

formed into both the source and target domains respectively.

Therefore, the generator G generates four types of images,

detailed as follows:

xss = G(zs, s) = G(E(xs), s), (3)

xst = G(zs, t) = G(E(xs), t), (4)

xts = G(zt, s) = G(E(xt), s), (5)

xtt = G(zt, t) = G(E(xt), t). (6)

For easy implementation, the latent representation and the

domain code is concatenated into one long vector, i.e.,

[z; a], which is used as input of G. For the source domain

image xs, when transformed to source domain, the gener-

ated image xss should be the same as itself, i.e., xss ∼ xs,

and when transformed to the target domain, the generated

image xst should look alike real target domain images with

category unchanged which is constrained by the discrimina-

tor Dt introduced in Section 3.1.2. Similarly, the generated

image xtt should be the same as itself, i.e., xtt ∼ xt, and

xts should look alike real source domain images with cat-

egory unchanged which is constrained by the discriminator

Ds introduced in Section 3.1.2.

In summary, the objective function of the encoder and

generator is formulated as below:

LG = min
WG,WE

(∑
xs∈Xs

(
H(D

t
(x

st
), ỹ

st
) + α||xss − x

s||22
)

+
∑

xt∈Xt
(
H(D

s
(x

ts
), ỹ

ts
) + α||xtt − x

t||22)
)

= min
WG,WE

( ∑

xs∈Xs

(
H(D

s
(G(E(x

s
), t)), ỹ

st
) + α||G(E(x

s
), s) − x

s||22
)

+
∑

xt∈Xt

(
H(D

s
(G(E(x

t
), s)), ỹ

ts
) + α||G(E(x

t
), t) − x

t||22)
)
.

(7)

where H(·, ·) is the cross entropy loss used in softmax lay-

er, and α is a balance parameter for the two terms. The

1st and 3rd terms enforce the latent representation z to p-

reserve both cross-domain and category information via the

adversarial learning between the generator G and the duplex

discriminators Ds and Dt. The 2nd and 4th terms are the

reconstruction constraint for those images generated from

their original domain.

The sample xst is transformed from the labeled source

domain sample xs, so its category is expected to be the same

as xs’s. Its label for learning the generator is re-formulated

by including a real/fake discrimination node as follows:

ỹst = [

ys︷ ︸︸ ︷
0, 0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
c−i

, 0], xst ∈ Xst, cat(xst) = i,

(8)

where cat(·) indicates the category of sample xst, and

the ys with c nodes is the one-hot categorial coding of xs.

The sample xts is transformed from the labeled source do-

main sample xt, so its category is expected to be the same

as xt’s. However, xt is unlabeled before, therefore, the cat-

egorial label of xts, which is also the label of xt, needs to be

estimated from the classifier C (see Section 3.1.3 for detail-

s), and its label for learning the generator is re-formulated

by including a real/fake discrimination node as below:

ỹts = [

yt︷ ︸︸ ︷
0, 0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
c−i

, 0], xts ∈ Xts, cat(xts) = i,

(9)

where yt with c nodes stands for the one-hot categorial cod-

ing of xt, which is estimated by C.

The last node in ỹst and ỹts are for the fake sample. As

the images xst and xts are expected to be real when opti-

mizing the generator G, the last node is set as 0 in Equa-

tions (8) and (9).

3.1.2 Duplex Discriminators

The function of the duplex discriminators is to distinguish

the real images from the fake images, and also to catego-

rize the real source and target images. In the overall scheme
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of the proposed DupGAN, the duplex discriminators are s-

tacked on the generator G to ensure the images generated

from the generator look real and their category information

are preserved (e.g., an image of “1” from one domain is still

“1” but not one of the other categories when transformed

to the other domain), which can further enforce the latent

representation E(x) domain invariant and informative. As

it is difficult to directly constrain the label consistence of

unlabeled target domain images, we first provide a pseudo

label for the real target domain image xt (detailed in Sec-

tion 3.1.3), and then force its generated sample xts to be

with the same label.

Specifically, the discriminator Ds for source domain at-

tempts to distinguish the samples with source domain style,

i.e., the real image xs and the generated image xts. Be-

sides, Ds also categorizes of the real image xs. Thus, the

output of Ds is a softmax layer with c+1 nodes, where the

first c nodes represent the category for the real images, and

the last one indicates the falsity of the input image. Similar

with E and G, both Ds and Dt can any kind of deep neural

network and their parameters are denoted as WD.

When the input is xs, Ds should classify it into one of the

c real classes, i.e., the objective label is the known categorial

label of images from Xs, detailed as follows:

ỹs = [

ys︷ ︸︸ ︷
0, 0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
c−i

, 0], xs ∈ Xs, cat(xs) = i.

(10)

When the input is xts, Ds should classify it into the fake

class. The objective label is as follows:

ỹts = [0, 0, · · · , 0︸ ︷︷ ︸
c

, 1], xts ∈ Xts.
(11)

Like ỹts in Equation (9), the labels ỹs and ỹts are one-

hot coding. When the input image is real, the node of its

real class is set as 1 and others including the (c + 1)-th n-

ode which indicates the falsity are set as 0. When the input

image is fake, i.e., generated, the (c+ 1)-th node is set as 1
and others, i.e., the real class nodes, are set as 0.

Similarly, the discriminator Dt attempts to do real/fake

discrimination and category classification for target domain.

The input for Dt consists of images from Xt and Xst, and

the output is also modeled as a softmax layer with c + 1
nodes. The objective labels for the input images xt and xst

are as follows:

ỹt = [

yt︷ ︸︸ ︷
0, 0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
c−i

, 0], xt ∈ Xt, cat(xt) = i,

(12)

ỹst = [0, 0, · · · , 0︸ ︷︷ ︸
C

, 1], xst ∈ Xst.
(13)

The categorial labels of source domain images are

known, however, that of target domain images are unavail-

able. Therefore, here the category information of target do-

main images are estimated from the classifier C which is

stacked on the latent representation z (see Section 3.1.3 for

details).

In summary, the objective function of the duplex dis-

criminators Ds and Dt is formulated as below:

LD = min
WD

(∑
xs∈Xs

(
H(D

s
(x

s
), ỹ

s
) + H(D

t
(x

st
), ỹ

st
)
)

+
∑

xt∈Xt

(
H(D

t
(x

t
), ỹ

t
) + H(D

s
(x

ts
), ỹ

ts
)
))

= min
WD

(∑
xs∈Xs

(
H(D

s
(x

s
), ỹ

s
) + H(D

t
(G(E(x

s
), t)), ỹ

st
)
)

+
∑

xt∈Xt

(
H(D

t
(x

t
), ỹ

t
) + H(D

s
(G(E(x

t
), s)), ỹ

ts
)
))

,

(14)

where H(·, ·) is the cross entropy loss, and WD represents

the parameters of Ds and Dt.

It should be noted that the ỹst and ỹts are equipped with

different values during adversarial optimization between the

generator and duplex discriminators. When optimizing Ds

and Dt, the activations of Xst and Xts are expected to lie in

the last node, as in Equations (11) and (13), to enforce both

of them capable of distinguishing the real images from the

fake ones. When optimizing the generator G, the activations

of Xst and Xts are expected to lie in the first c nodes, as in

Equations (10) and (12), to enforce the generator capable of

producing real images.

3.1.3 Classifier

For the categorial classification, a classifier C is established

on the latent representation z and its objective function is as

follows:

LC = min
WC

(∑
xs∈Xs

H(zs, ys) +
∑

xt∈Xt
H(zt, yt)

)
,

(15)

where C can be constructed with any kind of deep network

layers with softmax output, H(·, ·) is the cross entropy loss,

and WC represents the parameters of C. The categorial la-

bel ys of the source domain image, which has been illustrat-

ed in Equations (8) and (11), are known and the pseudo label

yt of target domain, which has been illustrated in Equation-

s (9) and (12), is estimated via the classifier C, which are

both with c nodes w.r.t. one-hot coding. It is notable that the

second term in Equation (15) only contains those pseudo-

labeled samples with high confidence. With the premise

that the highly confident pseudo labels are mostly correct

[6, 40] and the dominance of commonality [2], yt can be

also used to train C without performance degradation. The

classifier C needs to be pre-trained with only source do-

main images to ensure the initial transfer capability, i.e., the

ability to obtain mostly correctly pseudo-labeled target do-

main samples with high confidence, due to the dominance

of commonality in domain adaptation. Thus, the number of
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samples in the second term is quite few or even zero at the

very beginning and becomes larger as the training goes on.

Moreover, C further helps to attain domain-invariant z,

because the domain-specific part in z will be discarded or

concealed by G to fool both Ds and Dt with not only the

real/fake discrimination but also the category classification.

Thus, only the domain-invariant part in z can be exploited

by Ds and Dt, and z tends to be domain-invariant to avoid

information loss in G.

3.1.4 Overall Objective

The overall objective function can be formulated as follows:

L = min
WE ,WC ,WG,WD

(
LG + LD + βLC

)
, (16)

where β is a balance parameter.

The generator and the duplex discriminators are opti-

mized in adversarial manner, and this can ensure the images

from generator are real and their category information pre-

served. Like all adversarial learning methods, the labels of

generated images for optimizing G and D are different as

shown in Equations (8), (9), (11) and (13). Therefore, the

overall network is optimized in an alternative way, i.e., al-

ternative gradient descent w.r.t. WD and {WE ,WG,WC}.
The detailed optimization process is shown in Algorithm 1.

Algorithm 1 Optimization procedure of DupGAN.

Input: The source domain sample xs and its category label ys, target

domain sample xt without category label.

Output: The parameters of whole network, W =
{WE ,WC ,WG,WD}.

1: Pre-train E and C with images in Xs.

2: while not converge do
3: Provide pseudo label for those images xt ∈ Xt with

highly confident label prediction via C;

4: Update WD by minimizing LD in Equation (14) through

the gradient descent:

WD ←WD − η ∂LD
∂WD

5: Update WC , WG and WE by minimizing LG + βLC

(in Equations (7) and (15)):

WC ←WC − ηβ ∂LC
∂WC

WG ←WG − η ∂LG
∂WG

WE ←WE − η(β ∂LC
∂WC × ∂WC

∂WE + ∂LG
∂WG × ∂WG

∂WE )
6: end while

3.2. Difference from the Related Work

Difference from DANN [12, 13] and ADDA [48]. Both

DANN and ADDA map the target domain samples to the

source domain in the deep feature space where the adver-

sarial loss of domain classification is applied. Both of them

can not promise that the structure of target domain feature s-

pace is not distorted when mapped to source domain. On the

contrary, our DupGAN not only alleviates the domain dis-

crepancy but also preserves the category structure of target

domain via the duplex discriminators with additional clas-

sification task. Moreover, our DupGAN is capable of image

transformation between domains, while DANN and ADDA

are not.

Difference from DRCN [15]. DRCN combines the clas-

sification task of source domain and the reconstruction task

of target domain to find the shared feature space of the t-

wo domains, however, the shared representation is more in

preference of source domain. More favorably, our DupGAN

employs the adversarial learning between the generator and

duplex discriminators to explicitly ensure the latent repre-

sentation domain invariant.

Difference from DTN [47], CoGAN [30] and UNIT
[29]. All of DTN, CoGAN, UNIT and our DupGAN fol-

low the idea of generative adversarial network to achieve

the cross domain representation and domain transforma-

tion. However, all the other three methods only conduct

adversarial learning of real/fake which may cause structure

distortion in the process of domain transformation. Differ-

ently, in our DupGAN, the domain adversarial learning is

coupled together with the category classification, leading to

domain invariant latent representation and domain transfor-

mation with category information undistorted.

Difference from kNN-Ad [42] and ATDA [40]. Both

kNN-Ad and ATDA achieve unsupervised domain adapta-

tion via re-labeling the unlabeled target domain. In both

methods, the labeling for target domain is mainly based on

the source domain samples without explicitly considering

the domain discrepancy. In our DupGAN, the labeling for

target domain is based on the domain invariant latent repre-

sentation which can achieve more confident category label-

s. Besides, our method can conduct domain transformation,

while both kNN-Ad and ATDA can not.

4. Experiments
The evaluation is to do category classification on the test-

ing set of target domain with training on labeled source do-

main samples and unlabeled target domain ones. The per-

formance is reported in terms of rank-1 accuracy of the clas-

sifier C. We compare the proposed DupGAN with a few

state-of-the-art methods, including DANN [12, 13], AD-

DA [48], DSN [4], DRCN [15], CoGAN [30], UNIT [29],

kNN-Ad [42] and ATDA [40] on digit classification task

(i.e., MNIST ↔ USPS and SVHN ↔ MNIST detailed in

Section 4.2.1) and object recognition task (i.e., Office-31
detailed in Section 4.2.2).

For more intensive comparison, we also evaluate the D-

CNN trained with only labeled source domain images, de-

noted as “DCNN-SourceOnly”, and the DCNN trained with

only labeled target domain images, denoted as “DCNN-

TargetOnly”. Both “DCNN-SourceOnly” and “DCNN-

TargetOnly” are constructed with the same network struc-

tures as ours, and indicate the lower bound and upper bound

performance of the domain adaptation.
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Method MNIST→ USPS USPS→MNIST SVHN→MNIST MNIST→ SVHN SVHNextra→MNIST

DCNN-SourceOnly 86.75 75.52 62.19 33.7 73.67

DANN [12, 13] 85.1 73.0 73.85 - -

DRCN [15] 91.8 73.67 81.97 40.05 -

ADDA [48] 92.87 93.75 76.0 - 86.37

DSN [4] 91.3 73.2 82.7 - -

CoGAN [30] 95.65 93.15 - - -

UNIT [29] 95.97 93.58 - - 90.53

kNN-Ad [42] - - 78.8 40.3 -

ATDA [40] 93.17 84.14 85.8 52.8 91.45

DupGAN(Ours) 96.01 98.75 92.46 62.65 96.42
DCNN-TargetOnly 95.02 98.96 98.97 87.74 98.97

Table 1: The results of unsupervised domain adaptation of digit classification. Because we share the same experiment settings with most

compared works, we copy the corresponding results from the original papers. As for ADDA and DSN on MNIST ↔ USPS, SVHNextra

→MNIST and USPS→MNIST respectively, we directly use their released code to obtain the results as none are reported in the original

works. For ATDA on MNIST ↔ USPS and SVHNextra → MNIST, we implement it by ourselves to report the results as no code is

released. The results signed with “-” are neither reported in original work nor tuned to reasonable performances. The SVHNextra →
MNIST experiment use the extra training set of SVHN.

4.1. Implementation Details

In all experiments, the pixel values in the input images

are re-scaled to [−1.0, 1.0]. TanH function, i.e., ex−e−x

ex+e−x , is

used as the activation function of the last layer in the gen-

erator G for scaling the output pixels to [−1.0, 1.0], to be

consistent with the input. The balance parameters α and β
in MNIST ↔ USPS and SVHN → MNIST are empirical-

ly set as 10.0 and 0.2, respectively, and that in MNIST →
SVHN are set as 1.0 and 1.0, respectively. In all the experi-

ments of object recognition, α and β are set as 1.0 and 1.0,

respectively. All the used architectures are the same with

the state-of-the-art methods, detailed in the supplementary

material.

The pseudo label yt (mentioned in Section 3.1.3) with

softmax score higher than a threshold is selected to train

the classifier C. The threshold is set as 0.99 in MNIST ↔
USPS, SVHN → MNIST and all the experiments of object

recognition, and that of MNIST → SVHN is set as 0.9 to

avoid too few pseudo-labeled samples as this task is much

harder.

4.2. Experiment Results

4.2.1 Unsupervised Domain Adaptation of Digit Clas-
sification

For digit classification, the datasets of MNIST [28], USPS

[10] and SVHN [35] are used for evaluating a all the meth-

ods. All three datasets contain images of digits 0 ∼ 9 but

with different styles. MNIST is composed of 60000 training

and 10000 testing images. USPS consists of 7291 training

and 2007 testing images. SVHN contains 73257 training,

26032 testing and 531131 extra training images. In the e-

valuation, we follow the same protocol with the compared

methods for fair comparison. Specifically, in the experi-

ments of MNIST ↔ USPS and SVHN → MNIST, we use

(a) Before adaptation. (b) After adaptation.

Figure 3: The distribution of source and target domain samples

before and after the adaption on SVHN → MNIST. (a) shows the

distribution of the original source and target domain samples; (b)

shows the distribution of the latent representation of the source

and target domain samples obtained by our proposed DupGAN.

The source and target domain samples are shown in red and blue

respectively, and the categories are drawn with different shapes.

similar network structure with that described in UNIT [29],

and in the experiment of MNIST → SVHN, we use similar

structure with [40].

The performance of all methods are shown in Table 1.

As seen, our proposed DupGAN outperforms all the

compared methods, especially on the challenging MNIST

→ SVHN with an improvement up to about 10%. This

superiority benefits from the adversarial learning between

the generator and the duplex discriminators, which can

ensure the latent representation domain invariant and infor-

mative. To deserve to be mentioned, DupGAN outperforms

the “DCNN-TargetOnly” model, which may be due to

that the source domain has a lot of labeled data with more

variations better for adaptation, while the target domain has

only limited labeled data, which is exactly the use case for

unsupervised domain adaptation.

We further visualize the distribution of the learnt latent

representation to investigate the effect of domain adaptation
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Figure 4: The exemplars of domain transformation from SVHN to

MNIST. In every two columns, the left and right images are the im-

ages from real source domain and their corresponding transformed

images in target domain.

in the SVHN → MNIST experiment. As seen from Fig-

ure 3, the discrepancy is significantly reduced in the laten-

t representation space of our proposed DupGAN. Besides,

the category structure of the samples from both domain are

well preserved as expected, which is beneficial for the fi-

nal classification. Moreover, Figure 4 visualizes domain

transformed images of our method from SVHN to MNIST

dataset. As seen, our method can effectively achieve image

transformation with category information preserved.

Ablation Study. We also try ablation study on unsuper-

vised domain adaptation on MNIST → USPS and SVHN

→MNIST with different components ablation, i.e., training

with only the classifier C and the reconstruction loss (de-

noted as DupGAN-woA), training completely without the

discriminators (denoted as DupGAN-woAD), and training

with only the classifier C (denoted as DupGAN-woADG).

The results are shown in Table 2.

Experiments DupGAN DupGAN-woA DupGAN-woAD DupGAN-woADG

MNIST→ USPS 96.01 94.57 93.82 93.32

SVHN→MNIST 92.46 68.30 67.43 60.18

Table 2: Ablation study on digit classification of MNIST→USPS.

As can be seen, when one or more parts are removed,

the performance degrades. The more parts are removed, the

worse the performance is. The result also shows that all

the parts are designed reasonably and they are in harmony

with each other, forming an effective solution for domain

adaptation, especially for those challenging cases.

4.2.2 Unsupervised Domain Adaptation on Object
Recognition

We also evaluate our DupGAN on Office-31 dataset [39].

Office-31 is a standard benchmark for domain adaptation,

consisting of 4110 images within 31 categories collected

from three distinct domains: Amazon (A), Webcam (W)

and DSLR (D). In this experiment, we only evaluate on the

challeging settings of A ↔ W and A ↔ D. We follow the

standard unsupervised domain adaptation training protocol,

i.e., using all labeled source data and unlabeled target data,

and employ the same network architecture as DRCN [15]

(detailed in the supplementary material). For reconstructing

the input images is harder in this senario, the generator

aims for generating the feature map, as in DRCN [15].

The evaluation results are shown in Table 3. As can be

seen, DupGAN outperforms the compared state-of-the-art

methods, which again demonstrates the effectiveness of our

proposed DupGAN.

Method A→W W→ A A→ D D→ A

DCNN 61.6±0.5 49.8±0.4 63.8±0.5 51.1±0.6
DAN [31] 68.5±0.4 53.1±0.3 67.0±0.4 54.0±0.4

DANN [12, 13] 72.6±0.3 52.7±0.2 67.1±0.3 54.5±0.4
DRCN [15] 68.7±0.3 54.9±0.5 66.8±0.5 56.0±0.5

DupGAN(Ours) 73.2±0.2 59.1±0.5 74.1±0.6 61.5±0.5

Table 3: The results of unsupervised domain adaptation on Office-

31. For the same experiment settings, we directly copy the results

of the related work from the original papers. The “DCNN” are

the results of AlexNet only finetuned with labeled source domain

samples, copied from DAN [31].

5. Conclusion and Further Work
We propose a generative adversarial network with duplex

discriminators named DupGAN to handle the unsupervised

domain adaptation problem. DupGAN consists of an en-

coder, a generator and duplex discriminators, which respec-

tively aim for encoding the input images to the latent repre-

sentation, decoding the latent representation to source and

target domains, and doing the category classification and re-

al/fake discrimination. A classifier stacked on the encoder

is used to classify samples from both the two domains di-

rectly. Benefited from the adversarial learning between the

generator and the duplex discriminators, the latent represen-

tation is encouraged to domain invariant and category infor-

mative. As a result, the generator can achieve favorable do-

main transformation with less category distortion. As eval-

uated on several classical datasets, our proposed DupGAN

achieves the state-of-the-art performance on unsupervised

domain adaptation of digit classification and object recog-

nition. In the future, we will explore the DupGAN on larger

datasets with fine grained classification.
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